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flow and a multiphase sequential reaction mechanism
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Abstract. A theoretical analysis for the unconfined deflagration of a porous energetic material is developed for
a two-step global reaction mechanism that consists of the condensed-phase combustion of the reactive material
to produce gas-phase intermediates, followed by a gas-phase reaction that produces final gas-phase products. An
asymptotic approach is employed, leading to explicit formulas for the deflagration velocity in specific parameter
regimes. The results clearly indicate the influences of two-phase flow and the multiphase, multi-step chemistry
on the burning rate, and serve to further characterize the combustion behavior of a significant class of degraded
nitramine-type propellants for which the present analysis is applicable.
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1. Introduction

The combustion behavior of porous energetic materials such as solid propellants is a subject
of increasing interest in the fields of propulsion and pyrotechnics. This interest is motivated, at
least in part, by uncertainties with respect to both performance and safety when an energetic
material has either been in existence for an extended period of time and/or has been exposed
to an abnormal thermal environment at some point in its history. In such a situation, there is
likely to be some degree of degradation in the chemical composition of the material, resulting
in a much higher porosity than that of the original pristine material, with the voids being
filled with intermediate gas-phase decomposition products. Thus, it is becoming increasingly
clear that, during combustion, two-phase-flow effects play an important role, both within
the degraded solid, as well as within a thin multiphase layer at the surface where finite-rate
exothermic reactions occur. As a result, the deflagration characteristics of such ‘damaged’
materials, with porosities as high as order unity, may differ significantly from those of the
pristine material due, at least in part, to greatly enhanced gas flow in the solid/gas preheat
region. The presence of gas in the porous solid in turn results in a more pronounced two-phase
effect in the multiphase surface layer, as, for example, in the commonly observed liquid melt
region of nitramine propellants, which are often characterized by extensive bubbling in an
exothermic foam layer. Indeed, the present analysis, along with several other recent studies
described below, is largely applicable to this latter class of propellants.

Despite difficulties inherent in describing phenomena associated with two-phase flow, there
have by now been a number of relatively complete formulations employing various types of
constitutive relations, which are generally required to close the governing system of equations
([1]). The process of analyzing such models presents significant challenges, not only because
of the variety of physical phenomena associated with such problems, but also from the greater
degree of nonlinearity that arises from the appearance of appropriate volume-fraction variables
that multiply each quantity associated with a particular phase. Although early two-phase work
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in this area tended to circumvent some of the difficulties by treating the two-phase medium as
a single phase with suitably ‘averaged’ properties ([2], [3]), the resulting models required the
velocity (and temperature) of each phase to be the same, precluding many of the predominant
effects associated with combustion processes that involve two-phase flow. Indeed, some of
these concerns have recently been addressed in several recent papers ([4], [5], [6], [7], [8], [9]).
To be able to focus clearly on the effects of two-phase flow, the description of the chemistry was
deliberately simplified. In particular, a one-step overall exothermic process, R(c) ! P (g),
representing the direct conversion of the condensed (liquid) propellant to gaseous products,
was generally considered in the latter group of studies. However, in one of these studies,
[5], a somewhat more elaborate mechanism, motivated by knowledge of nitramine chemistry
and given by R(c) ! P (g); R(c) $ R(g); R(g) ! P (g), was adopted, where R(g) is a
gaseous reactant. In each of these studies, the goal was to clarify certain fundamental two-
phase effects on steady, planar deflagrations and their stability. These effects specifically
included those associated with different velocities and, in several instances, temperatures for
each phase.

The motivation for the present work is to extend these previous studies by incorporating
both condensed- and gas-phase reactions in the thin reaction region previously represented by
the simple one-step mechanism R(c) ! P (g). The model and analysis differ from those in
[5], however, in that we consider a regime in which both types of reactions occur in the same
thin multiphase region, as opposed to considering a separated regime in which the gas-phase
reaction occurs downstream of the condensed-phase decomposition. In particular, we consider
a two-step process in which the first step consists of an overall condensed-phase reaction that
produces gas-phase intermediates, and the second step consists of the global reaction of
these gas-phase intermediates to produce final gas-phase products. This simple mechanism,
of course, is still an extreme approximation to the actual chemistry that transpires during
nitramine deflagration ([10], [11]), but as with the single-step studies referenced above, our
goal remains centered on assessing the role of two-phase flow on the structure and propagation
of the combustion wave. In a sense, the present study is thus a multiphase analog to other single-
phase analyses of combustion waves in gases and solids that are governed by a sequential
reaction mechanism ([12], [13], [14], [15]).

2. The mathematical model

The physical problem of interest in the present study is described as follows. We consider an
unconfined environment in which the unburned and degraded porous solid lies generally to
the left, and the burned gas products lie to the right. Gas-phase intermediates are assumed to
be produced directly by condensed-phase reactions, and these, in turn, can react to form the
final combustion products according to

R(c)! I(g); I(g)! P (g); (1)

whereR(c) denotes the condensed (melted) reactant material, I(g) stands for the intermediate
gas-phase species, and P (g) represents the final gas-phase products (Figure 1). The nonzero
porosity of the condensed material, which is an essential feature of the present analysis, is
likely to arise not by design, but through slow degradation of the original pristine material, due
either to some measure of metastability in the original material or to exposure to an abnormal
thermal environment at some point in its history. As a result, the unburned solid is now said to
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Figure 1. Outer structure of the leftward-propagating deflagration wave. The solid/gas region lies to the left of
� = 0, and the liquid/gas region to the right. The shaded area denotes the region �r < � < �r +H , which, despite
the explicit representation afforded by the outer delta-function formulation, actually lies within the inner reaction
zone. The region to the right of the reaction zone consists of purely gaseous products. Parameter values used were
b = r = Le = l = 1; b̂ = r̂ = l̂ = 0�8; �s = 0.25; Ql = 5; Qg = H = 0.5; s = �0.2; Tm = 2.

be in a ‘damaged’ state, and consequently, the intermediate gas-phase species are assumed to
fill the pores far upstream of the reaction. The present analysis considers the merged regime
in which both reactions occur within a single reaction zone (necessary conditions for this
to occur are given below), in contrast to a previous study [5] in which these reactions were
spatially separated. Thus, the deflagration wave, which moves from right to left, consists of
a solid/gas preheat region, the melting surface across which the condensed component of
the two-phase mixture undergoes a phase change, a liquid/gas preheat region, a relatively
thin (due to the realistic assumption of large activation energies) reaction zone in which all
the condensed-phase material and gas-phase intermediates are converted to gaseous products
according to (1), and finally, the burned region which, in reality, often corresponds to a dark
zone that separates the primary flame region from a secondary gas flame downstream. Since
the latter has relatively little influence across the dark zone on the primary reaction zone, it
has correspondingly little effect on the burning velocity and can therefore be suppressed in
the present type of deflagration analysis. In what follows, we will restrict attention to one
spatial dimension (~x), and use the subscripts s; l and g to denote solid, liquid and gas-phase
quantities, respectively. The porous solid and intermediate gas-phase species thus extend to
~x = �1, where conditions are denoted by the subscript u, while the product gases extend to
~x = +1, where conditions are identified by the subscript b. The appearance of a tilde over a
symbol (e.g., ~x) will denote a dimensional quantity.

A reasonable model, appropriate for describing this type of multiphase deflagration wave,
was derived previously for the simpler case of a single-step reaction mechanismR(c)! P (g)
in which the condensed-phase reactant material was converted directly into gas-phase products,
which were thus the only gas-phase species that existed in the model [7]. Here, however, we
wish to describe, in addition to the two-phase-flow effects that were the focus of the previous
work, the fundamental effects associated with separate condensed- and gas-phase reactions,
and multiple gas-phase species. Thus, as before, the governing system of equations consists
of conservation equations for mass, momentum and energy in the two-phase solid/gas and
liquid/gas regions to the left and right of the melting surface ~x = ~xm, but with an additional
species conservation equation associated with the mass fraction of one of the two classes of
gas-phase species (either intermediates or products). Denoting the gas-phase volume fraction
by �, we may express continuity of each phase in the region ~x > ~xm separately for the liquid
and gas phases as
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@

@~t
[(1� �)~�l] +

@

@~x
[(1� �)~�l~ul] = � ~Al ~�l(1� �)exp(� ~El= ~R

� ~Tl); ~x > ~xm; (2)

@

@~t
(�~�g) +

@

@~x
(�~�g~ug) = ~Al ~�l(1� �)exp(� ~El= ~R

� ~Tl); ~x > ~xm; (30)

where ~�; ~u; ~T and ~t denote density, velocity, temperature and time, respectively. In addition,
we must also satisfy mass continuity of each gas-phase species. Denoting by Y and Yp the
mass fractions of the gas-phase intermediate and product species, respectively, we have by
definition Yp = 1� Y , where the mass conservation equation for Y is given by

@

@~t
(�~�gY ) +

@

@~x
(�~�g~ugY ) =

@

@~x

�
�~�g ~D

@Y

@~x

�
+ ~Al~�l(1� �)exp(� ~El= ~R

� ~Tl)

� ~Ag(�~�gY )
n exp(� ~Eg= ~R

� ~Tg); ~x > ~xm;

(40)

where ~Al; ~Ag and ~El; ~Eg are the exponential reciprocal-time prefactors and the overall acti-
vation energies of the condensed (liquid) and gas-phase reactions, respectively; ~R� is the
universal gas constant and n is the order of the gas-phase reaction. For simplicity, we will
assume a constant value for ~�l, but we do allow for variations in ~�g. As in previous work ([4],
[7]), the evaluation of the condensed-phaseArrhenius reaction rate is based on conditions (e.g.,
temperature) in the liquid phase, and may be interpreted as a contribution to a constitutive
relation for that medium. In a similar fashion, it is assumed here that the gas-phase reaction
rate is based on local conditions in the gas. For additional simplicity, we shall take Al and
Ag to be constants, although for this type of global kinetic modeling, it may be reasonable to
assign a pressure, as well as a temperature, dependency to these coefficients.

It is convenient to eliminate the liquid-phase reaction terms in (30) and (40) by summing
each of these equations with (2) to obtain the overall liquid/gas continuity equation

@

@~t
[(1� �)~�l + �~�g] +

@

@~x
[(1� �)~�l~ul + �~�g~ug] = 0; ~x > ~xm; (3)

and

@

@~t
[(1� �)~�l + �~�gY ] +

@

@~x
[(1� �)~�l~ul + �~�g~ugY ]

=
@

@~x

�
�~�g ~D

@Y

@~x

�
� ~Ag(�~�gY )

n exp(� ~Eg= ~R
� ~Tg); ~x > ~xm: (4)

In the solid/gas region ~x < ~xm, we assume for the solid phase a constant density ~�s and
zero velocity (~us = 0), with � � �s also constant in this region. The gas-phase continuity
equations for ~x < ~xm are thus independent of the solid phase and are given by

@

@~t
(�s~�g) +

@

@~x
(�s~�g~ug) = 0; ~x < ~xm; (5)

@

@~t
(�s~�gY ) +

@

@~x
(�s~�g~ugY ) =

@

@~x

�
�s~�g ~D

@Y

@~x

�
; ~x < ~xm; (6)
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where the first of these denotes overall gas-phase continuity and the second describes mass
continuity of the intermediate gas-phase species. We observe that no reaction is assumed
to occur in the solid phase and, owing to the assumption of large activation energies in the
reaction-rate expressions (see below), the gas phase is reactionless as well in this region.

Conservation of energy for each phase in the liquid/gas region is given by

@

@~t
[~�l~cl(1� �) ~Tl] +

@

@~x
[~�l~cl~ul(1� �) ~Tl]�

@

@~x

"
~�l(1� �)

@ ~Tl
@~x

#

= ~Ql
~Al ~�l(1� �)exp(� ~El= ~R

� ~Tl) + ~Klg( ~Tg � ~Tl); ~x > ~xm; (70)

@

@~t
(~�g~cg� ~Tg) +

@

@~x
(~�g~cg~ug� ~Tg)�

@

@~x

 
~�g�

@ ~Tg
@~x

!

= ~Qg
~Ag(�~�gY )

n exp(� ~Eg= ~R
� ~Tg) + �

@~pg

@~t
+ ~Klg( ~Tl � ~Tg); ~x > ~xm; (80)

where ~c; ~� and ~p denote heat capacity (at constant volume for the liquid, and at constant
pressure for the gas, both assumed constant), thermal conductivity and pressure, respectively;
~Ql and ~Qg denote the heat release for the condensed and gas-phase reactions at temperatures
~Tl and ~Tg , respectively, and ~Klg is an interphase heat-transfer coefficient (cf. [4]), where
interphase heat transfer is assumed to be the dominant mode of thermal contact between
phases. As is evident from the placement of the reaction-rate terms in (70) and (80), the heat
released by the condensed-phase reaction, ~Ql, is assumed to be deposited in the liquid, while
the heat released by the gas-phase reaction, ~Qg, is assumed to be deposited in the gas. These
assignments represent constitutive types of assumptions that can be appropriately generalized,
although in the single-temperature limit considered below, the model becomes independent
of how the heat release is apportioned between the two phases. Replacing all l-subscripts
with s-subscripts, the corresponding equations in the reactionless solid/gas region ~x3 < ~xm
are essentially the same as (70) and (80), but without the reaction-rate terms and a different
interphase heat-transfer coefficient ~Ksg. We note that, because of the small Mach number and
the generally small ratio of gas-to-liquid densities in the problems to be considered, no terms
involving the liquid pressure ~pl appear in (70), and the gas pressure ~pg depends only on ~t in
(80). We remark that the term involving @~pg=@~t originates from the contribution to the rate
of change of the internal energy of the gas resulting from the sum of the rate of surface work
�@(�~ug ~pg)=@~x and the rate of volume work �~pg@�=@~t performed by the gas (see [7]).

It is again convenient to eliminate reaction-rate terms when possible, and consequently,
we use (30) and (40) in (70) and in the overall liquid/gas energy equation that is obtained from
summing (70) and (80). Thus, in place of (70) and (80), we obtain the liquid and overall energy
equations

@

@~t
[~�l(1� �)( ~Ql + ~cl ~Tl)] +

@

@~x
[~�l~ul(1� �)( ~Ql + ~cl ~Tl)]�

@

@~x

"
~�l(1� �)

@ ~Tl
@~x

#

= ~Klg( ~Tg � ~Tl); ~x > ~xm; (7)

@

@~t
[~�l(1� �)( ~Ql + ~Qg + ~cl ~Tl) + ~�g�( ~QgY + ~cg ~Tg)]
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+
@

@~x
[~�l~ul(1� �)( ~Ql + ~Qg + ~cl ~Tl) + ~�g~ug�( ~QgY + ~cg ~Tg)]

=
@

@~x

"
~�l(1� �)

@ ~Tl
@~x

+ ~�g�
@ ~Tg
@~x

+ ~Qg ~�g ~D�
@Y

@~x

#
+ �

@~�g

@~t
; ~x > ~xm: (8)

In the reactionless solid/gas region, conservation of energy may thus be written in the form

@

@~t
[~�s~cs(1� �s) ~Ts]�

@

@~x

"
~�s(1� �s)

@ ~Ts
@~x

#
= ~Ksg( ~Tg � ~Ts); ~x < ~xm; (9)

@

@~t
[~�s~cs(1� �s) ~Ts + ~�g~cg�s ~Tg] +

@

@~x
(~�g~cg~ug�s ~Tg)

=
@

@~x

"
~�s(1� �s)

@ ~Ts
@~x

+ ~�g�s
@ ~Tg
@~x

#
+ �s

@~pg
@~t

; ~x < ~xm; (10)

where (10) describes overall energy conservation which we obtain by summing Equation (9)
for the solid and the corresponding equation for the gas phase.

As described in previous work ([4], [7]), analogous equations may be written for momentum
conservation (see below), but they do not need to be introduced explicitly for the present class
of deflagration-type problems. As remarked above, the approximation of small Mach number
implies that the gas pressure ~pg, which is coupled to the other field variables through the
gas-phase equation of state, is independent of the spatial coordinate. In the present work, the
gas is assumed to be ideal, whence

~pg = ~�g(Y= ~WI + (1� Y )= ~WP ) ~R
� ~Tg; (11)

where ~WI and ~WP are the respective molecular weights of the intermediate and product gases.
Aside from initial and boundary conditions, which will be specified shortly, one addition-

al equation, such as an equation for either ~ug or ~ul, is required to close the above system.
One possibility is to invoke the simple assumption that ~ug = ~ul, but the neglect of velocity
differences between the condensed and gas phases, though characteristic of early work (see
[2] and [3]), cannot account for potentially significant phenomena associated with convective
enthalpy transport by the gas relative to enthalpy transport in the condensed phases [16].
Moreover, such an assumption can be shown to be inconsistent with momentum conservation.
Indeed, a more careful analysis of gas and condensed-phase momentum, allowing for non-
equilibrium between the gas and condensed-phase pressures, was considered in [4], where it
was determined that a qualitatively correct approximation in the limit of small viscous and
surface-tension-gradient forces is, for ~us = 0,

~ul =
�@~xm

@~t

�
~�s
~�l
(1� s�)� 1

�
; (12)

where s is a velocity-perturbation parameter that reflects the (opposing) contributions of
viscous and surface-tension-gradient effects. Equation (12) is the final result needed to close
the system. In the limit that viscous and surface-tension-gradient effects vanish, s! 0, which,
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for simplicity, is the case considered here. Some effects associated with nonzero values of this
parameter were studied previously in connection with the nonporous problem ([4], [6]).

The above equations now constitute a closed set for the variables �; ~ug; ~Tl; ~Tg; ~Ts; ~�g and
~pg. The problem is thus completely determined once initial and boundary conditions (including
interface relations at ~x = ~xm) are specified. In the present work, we will not be concerned
with the initial-value problem, but only the long-time solution corresponding to an unconfined,
steadily propagating deflagration. Thus, @~p=@~t = 0 in (8) and (10), and the required boundary
conditions are given by

� = �s for ~x < ~xm; (13)

~ug ! 0; Y ! 1; ~Tg ! ~Ts ! ~Tu as ~x! �1; (14)

�! 1; ~pg ! ~p�g; Y ! 0; ~Tl ! ~Tg ! ~Tb as ~x! +1; (15)

where the burned temperature ~Tb is to be determined, and, since ~pg is a constant for the
unconfined deflagration considered here, the boundary condition on pressure implies that
~pg = ~p�g everywhere. Finally, if � superscripts denote quantities evaluated at ~x = ~x�m, the
continuity and jump conditions across the melting surface are

~��g = ~�+g ; Y � = Y +; (16)

~T�

g = ~T+

g ;
~T�

s = ~T+

l � ~Tm; (17)

conservation of condensed- and gas-phase mass fluxes,

(1� �s)~�s

�
�

d~xm
d~t

�
= (1� �+)~�l

�
~u+l �

d~xm
dt

�
; (18)

�s

�
~u�g �

d~xm
d~t

�
= �+

�
~u+g �

d~xm
d~t

�
; (19)

�+ ~D
@Y

@~x

����
~x=~x+m

� �s ~D
@Y

@~x

����
~x=~x�m

= 0; (20)

and conservation of condensed- and gas-phase enthalpy fluxes,

(1� �+)~�l
@ ~Tl
@~x

�����
~x=~x+m

� (1� �s)~�s
@ ~Ts
@~x

�����
~x=~x�m

= ~�s~s(1� �s)
d~xm
d~t

+

�
~�l~cl(1� �+)

�
~u+l �

d~xm
d~t

�
� ~�s~cs(1� �s)

�
�

d~xm
d~t

��
~Tm;

(21)

�+~�g
@ ~Tg
@~x

�����
~x=~x+m

� �s~�g
@ ~Tg
@~x

�����
~x=~x�m

= 0; (22)

where ~s is the heat of melting of the solid at temperature ~T = 0 (~s being negative when
melting is endothermic). From Equations (12), (18) and (19) we obtain the relations

�+~u+g � �s~u
�

g = �
d~xm
d~t

(�s � �+); �s � �+ = s�+(1� �+): (23–24)
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Consequently, in the limit s = 0 considered here, (23)–(24) reduce to the statement that
� = �s and ~ug are continuous across ~x = ~xm. Hence, from (20) and (22), @Y=@~x and
@ ~Tg=@~x are continuous there as well, and (21) reduces to

~�l
@ ~Tl
@~x

�����
~x=~x+m

� ~�s
@ ~Ts
@~x

�����
~x=~x�m

= ~�s
d~xm
d~t

[~s + (~cs � ~cl) ~Tm]; s = 0: (25)

3. Dimensionless formulation of the steady-state problem

In the present work, we will confine our attention to the case of a steadily propagating
deflagration that propagates with the (unknown) speed ~U = �d~xm=d~t, which is a convenient
characteristic velocity for the problem. Assuming constant values for heat capacities and
thermal conductivities, we then introduce the nondimensional variables

x =
~�s~cs ~U
~�s

~x; t =
~�s~cs ~U

2

~�s
~t; Ts;l;g =

~Ts;l;g
~Tu

; ul;g =
~ul;g
~U
; �g =

~�g
~�ug
; (26)

where, from the equation of state (11) evaluated at x = �1 according to (14), the upstream
reference gas density ~�ug is defined as ~�ug = ~p�g ~WI= ~R

� ~Tu. In addition, the nondimensional
parameters

r =
~�l
~�s
; r̂ =

~�ug
~�s
; l =

~�l
~�s
; l̂ =

~�g
~�s
; b =

~cl
~cs
; b̂ =

~cg
~cs
; s =

~s

~cs ~Tu
; w =

~WI

~WP

;

Le =
~�g

~�g ~D~cg
; Ql =

~Ql

~cs ~Tu
; Qg =

~Qg

~cs ~Tu
; Nl =

~El

~R� ~Tb
; Ng =

~Eg

~R� ~Tb
; (27)

Ksg =
~�s ~Ksg

~�2
s~c

2
s
~U2
; Klg =

~�s ~Klg

rb~�2
s~c

2
s
~U2
; �l =

~�s ~Al

~�s~cs ~U2
e�Nl ; �g =

~�s ~Ag(~�
u
g )

n

~�2
s~cs

~U 2
e�Ng ;

are defined, where n is the reaction order of the gas-phase reaction and Le is the Lewis
number associated with the gas phase. Having assumed a constant value for ~�g, we also
assume that ~�g ~D is constant, which implies a constant Lewis number. Finally, we remark
that either �l or �g may be regarded as an appropriate burning-rate eigenvalue, since the
determination of either provides an expression for the propagation speed ~U . Indeed, since
�g=�l = r̂( ~Ag= ~As)(~�

u
g )

n�1eNl�Ng , we shall, for definiteness, regard �l as the burning-rate
eigenvalue.

To analyze the case of a steadily propagating deflagration, it is convenient to transform
to the moving coordinate � = x + t whose origin is defined to be xm. Introducing the
above nondimensionalizations and coordinate transformation into the problem formulated in
the previous section, we obtain, after setting time derivatives to zero, the steady eigenvalue
problem

d
d�

[�g(ug + 1)] = 0; � < 0; (28)
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d
d�

[r̂�gY (ug + 1)] =
l̂

b̂
Le�1 d2Y

d�2 ; � < 0; (29)

d
d�

[r(1� �)(ul + 1) + r̂��g(ug + 1)] = 0; � > 0; (30)

d
d�

[r̂��gY (ug + 1) + r(1� �)(ul + 1)]

=
l̂

b̂
Le�1 d

d�

�
�
dY

d�

�
� �g(��gY )

n exp[Ng(1� Tb=Tg)]; � > 0; (31)

d
d�

[(1� �)(ul + 1)] = ��l(1� �)exp[Nl(1� Tb=Tl)]; � > 0; (32)

(1� �s)

 
dTs
d�

�
d2Ts

d�2

!
= Ksg(Tg � Ts); � < 0; (33)

(1� �s)
dTs
d�

+ r̂b̂�s
d
d�

[�g(ug + 1)Tg] =
d
d�

�
(1� �s)

dTs
d�

+ l̂�s
dTg
d�

�
; � < 0; (34)

d
d�

[(1� �)(ul + 1)(Ql + bTl)] =
l

r

d
d�

�
(1� �)

dTl
d�

�
+ bKlg(Tg � Tl); � > 0; (35)

d
d�

[r(1� �)(ul + 1)(Ql +Qg + bTl) + r̂��g(ug + 1)(QgY + b̂Tg)]

=
d
d�

"
l(1� �)

dTl
d�

+ l̂�
dTg
d�

+Qg
l̂

b̂
Le�1�

dY
d�

#
; � > 0; (36)

�gTg[Y + w(1� Y )] = 1; ul = (1� r)=r; (37–38)

subject to the boundary conditions

� = �s for � � 0; (39)

ug ! 0; Y ! 1; Tg ! Ts ! 1 as � ! �1; (40)

�! 1; Y ! 0; Tl ! Tg ! Tb as � ! +1; (41)

and the melting-surface (� = 0) conditions

T�

s = T+

l = Tm; Tg

����=0+

�=0�
= ug

����
�=0+

�=0�
= Y

�����
�=0+

�=0�
=

dY
d�

������
�=0+

�=0�

=
dTg
d�

�������
�=0+

�=0�

= 0; (42)

l
dTl
d�

����
�=0+

�
dTs
d�

�����
�=0�

= �s + (b� 1)Tm: (43)
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We remark that in writing Equations (38)–(43), we have for simplicity, set the velocity-
perturbation parameter s introduced in Equation (12) to zero, implying continuity of � and
ug at � = 0 as indicated above. Thus, the final model for steady, planar deflagration that has
been derived is given by (28)–(43), with the final burned temperature Tb and the flame-speed
eigenvalue (either �l or �g) to be determined. The latter then determines the burning rate,
and is the main result to be determined from the analysis that follows. We note that this
model, since it allows for temperature differences between phases at a given spatial location,
is sometimes referred to as a two-temperature model. An important special case, to which the
present work will ultimately be restricted, is that in which the rate of interphase heat transfer,
as reflected in the values of the parametersKsg and Klg, is large. This restriction then leads to
a somewhat simpler single-temperature model as a formal first approximation to the problem
defined by (28)–(43), while still allowing for the essential two-phase-flow effects associated
with velocity differences between phases.

4. Determination of Tb

The solution in the region � < 0, where chemical activity has been assumed to be absent, as
well as expressions for Tb and ug;1 � ugj�=1, are obtained from the general two-temperature
model as follows. From (28) and (40), we have

�g(ug + 1) = 1; � < 0; (44)

while an integration of (29) gives, upon use of (44), the integral

Y � 1 =
l̂

r̂b̂
Le�1 dY

d�
; � < 0: (45)

Similarly, integration of (30) implies

(1� �) + r̂��g(ug + 1) = r̂�bg(ug;1 + 1); � > 0; (46)

where �bg = (wTb)
�1 is the burned gas density. Thus, evaluating (46) at � = 0, using (44)

and the fact that all variables are continuous there, we obtain an expression for the burned-gas
velocity ug;1 as follows

ug;1 =
1 + �s(r̂ � 1)

r̂�bg
� 1; (47)

or, in terms of Tb,

ug;1 =
1 + �s(r̂ � 1)

r̂
wTb � 1: (48)

Turning attention to the overall energy equations (34) and (36), we may readily perform a
single integration on each using the preceding results to obtain

(1� �s)(Ts � 1) + r̂b̂�s(Tg � 1) = (1� �s)
dTs
d�

+ l̂�s
dTg
d�

; � < 0; (49)
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and

(1� �)(Ql +Qg + bTl) + [�+ �s(r̂ � 1)](QgY + b̂Tg)

= l(1� �)
dTl
d�

+ l̂�
dTg
d�

+Qg
l̂

b̂
Le�1�

dY
d�

+ b̂[1 + �s(r̂ � 1)]Tb; � > 0: (50)

Thus, subtracting (49) evaluated at � = 0� from (50) evaluated at � = 0+ and using the
melting-surface conditions (42) and (43), we derive for Tb the expression

Tb =
(1� �s)(Ql +Qg + 1 + s) + r̂�s(Qg + b̂)

b̂[1 + �s(r̂ � 1)]
: (51)

We note that this result has been derived from the more general two-temperature model (28)–
(43) and is independent of the particular form of the equation of state for the gas. In the
limit Qg ! 0, Equation (51) collapses to the result obtained for the corresponding single-step
model analyzed in [7].

The formulas for Tb and ug;1 given above exhibit certain features worth noting. In par-
ticular, there are significant variations of the final burned temperature and gas velocity with
pressure, since these quantities depend on the gas-to-solid density ratio r̂, which in turn is
proportional to ~p�g according to r̂ � ~�ug=~�s =

~WI ~p
�
g=~�s

~R� ~Tu = ~p�g=~�s~cg(1� �1) ~Tu, where
 is the ratio of specific heats for the gas. As discussed previously in connection with the
single-step model ([7]), this important effect arises from the thermal expansion of the gas
and the two-phase nature of the flow in the solid/gas and liquid/gas regions, where significant
gas-phase convective transport of enthalpy relative to the condensed phase occurs. In the limit
~p�g ! 0 (i.e. r̂ ! 0), we see that ug;1 ! 1 and Tb ! T 0

b � b̂�1(Ql + Qg + 1 + s).
Since there is effectively no gas-phase enthalpy content in this limit, T 0

b is also the value of
Tb in the limit of zero porosity (�s ! 0). For nonzero values of both pressure and porosity,
some of the heat released by combustion must be used to help raise the temperature of the
gas-phase intermediates within the porous solid from unity to Tb. Consequently, both Tb and
the final gas velocity ug;1 are typically decreasing functions of the nondimensional gas-phase
density r̂, which increases with pressure according to the above relation. For example, when
r̂ is relatively small, we have

Tb

T 0
b

= 1�
r̂�s

1� �s

 
1�

Qg + b̂

Ql +Qg + 1 + s

!
+O

�
r̂�s

1� �s

�2

; (510)

where, under typical practical circumstances, the ratio (Qg+ b̂)=(Ql+Qg+1+s) is less than
unity (e.g., when b̂ 6 1 and Ql > jsj). An additional effect that is revealed by the two-step
reaction mechanism is that Tb does not depend just on the total heat release Ql + Qg � Q
associated with the complete conversion of the energetic solid to final gas products, but also
on the heat release Qg specifically associated with the gas-phase reaction. This, too, is a
two-phase-flow effect that arises from the fact that the reactive intermediate gas-pase species
occupy the voids in the porous solid, and the heat released by these pre-existing intermediates
affects the final burned temperature. In particular, for a given total heat release Q, the burned
temperature increases as the fractional heat release associated with the gas-phase reaction

engiab4.tex; 16/07/1997; 6:59; v.6; p.11



184 Stephen B. Margolis

Figure 2. Final burned temperature Tb as a function of the solid porosity �s, for several values of the gas-phase
heat release Qg (remaining parameter values are the same as those used in Figure 1).

increases. Plots of Tb as a function of �s for several different values of Qg are shown in
Figure 2.

5. The single-temperature limit and the outer solution

As indicated at the end of section 3, an important and realistic limiting case, which results
in further simplification, is to consider the formal limit of infinitely fast interphase heat
transfer (i.e. Ksg;Klg ! 1), where such a limit corresponds to the typical case in which a
representative element of the medium (such as a gas bubble) is small. In that limit, Equations
(33) and (35) imply that Ts = Tg � T in the region � < 0, and Tl = Tg � T in the region
� > 0. The model then reduces to a single-temperature model, which is analyzed in the next two
sections. However, as discussed in Section 2, the corresponding assumption of a single-velocity
model is inconsistent with momentum conservation, and thus a primary feature of even the
single-temperature limit is the allowance for velocity differences between coexisting phases.
The case of large, but finite, values of the interphase heat-transfer coefficients, which permit
separate temperatures for each phase in the reaction zone (the region where two-temperature
effects first appear), was considered in [4] and [7] in connection with the single-step model
for the nonporous (�s = 0) and porous (�s > 0) cases, respectively.

In the limit thatKsg andKlg are both infinite, the model (28)–(43) reduces to a subproblem
written in terms of the single temperature variable T that denotes the common temperature
of all phases at a given spatial location. In particular, we obtain in this limit the reduced set
of equations given by the continuity equations (28)–(32) [with Tl and Tg each replaced by T
in the reaction-rate terms, and, in (30) and (32), ul + 1 = r�1 according to (38)], the overall
energy equations (34) and (36), which, using (38), become

d
d�
f[1� �a + r̂b̂�s�g(ug + 1)]Tg =

d
d�

�
(1� �s + l̂�s)

dT
d�

�
; � < 0; (340)

d
d�

[(1� �)(Ql +Qg + bT ) + r̂��g(ug + 1)(QgY + b̂T )]

(360)

=
d
d�

�
[l(1� �) + l̂�]

dT
d�

�
+Qg

l̂

b̂
Le�1 d2Y

d�2 ; � > 0;
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and the equation of state (37) for �g(T; Y ). These are subject to the boundary conditions
(39)–(41), in which the boundary conditions on the temperature reduce to T ! Tb and T ! 1
at � = �1, respectively, continuity of ug; Y; dY=d� and T = Tm at � = 0, and the overall
jump condition

[l(1��s)+ l̂�s]
dT
d�

����
�=0+

�(1��s+ l̂�s)
dT
d�

�����
�=0�

=(1��s)[�s+(b�1)Tm]: (430)

We remark that we obtain (430), which represents overall enthalpy-flux conservation across
� = 0, by multiplying (43) by (1� �s) and adding the result to the last of (42) multiplied by
l̂s. Finally, Equations (49) and (50) become

(1� �s + r̂b̂�s)(T � 1) = (1� �s + l̂�s)
dT
d�

; � < 0; (52)

and

[b(1� �) + b̂(�� �s + �sr̂)]T + (�� �s + �sr̂)QgY = [l(1� �) + l̂�]
dT
d�

+Qg
l̂

b̂
Le�1�

dY
d�

� (1� �)(Ql +Qg) + b̂(1� �s + �sr̂)Tb; � > 0; (53)

which now take the place of (340) and (360). We may integrate (52) using the fact that T = Tm
at � = 0 to give an explicit expression for T in the region � 6 0, but further analytical
development leading to the determination of the burning rate eigenvalue requires an analysis
of the reactive liquid/gas region � > 0. Equations (31), (32) and (53) constitute three equations
for Y; T and � in this region, with ug then determined from (46) along with the equation of
state (37), and the eigenvalue �l determined by the boundary conditions. In order to handle
the Arrhenius nonlinearities in (31) and (32), we exploit the largeness of the nondimensional
activation energiesNg andNl, and consider the formal asymptotic limit Ng; Nl � 1 such that

Ng

Nl
= �; � � (1� T�1

b )Nl � 1; (54)

where � is an O(1) parameter and the Zel’dovich number � is the large activation-energy
parameter that naturally emerges in the analysis that follows. For simplicity, we shall eventually
assume � � 1, in which case (54) implies that we are considering the regime in which the two
large activation energies differ by an approximately O(1) amount. The relation (54), along
with a corresponding order relation for the ratio �g=�l to be introduced shortly, helps to
insure that both the condensed and gas-phase reactions are active in a single thin reaction
zone. Departures from (54) allow for separated reaction zones (see [17]), but in the present
work we shall focus on the merged case just described (see [12], [13], [14], [15]).

In the limit � !1, the Arrhenius terms are exponentially small unlessT is within O(1=�)
of Tb. Consequently, all chemical activity is concentrated in a very thin reaction zone whose
thickness is O(1=�). On the scale of the (outer) coordinate �, this thin region is a sheet whose
location is denoted by �r = xr � xm, where xr > xm. Hence, the semi-infinite liquid/gas
region is comprised of a preheat zone 0 < � < �r) where chemical activity is exponentially
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small, the thin reaction zone where the two chemical reactions are active and go to completion,
and a burned region � > �r. Denoting the outer solutions on either side of the reaction zone
by a zero superscript, we conclude from (32) that

�0 =

(
�s; � < �r;

1; � > �r;
(55)

and from (37), (44), (46) and (47),

ug + 1 =
�� �s + r̂�s

r̂�
[Y +w(1� Y )]T (56)

for all �. We observe that there is a jump in �0, and hence also in u0
g, across the reaction zone.

Similarly, in obtaining the complete outer solution for Y and T , we must connect the solutions
on either side of the reaction zone by deriving appropriate jump conditions across � = �r.
This will ultimately entail the introduction of a stretched coordinate (see below) appropriate
for analyzing the inner structure within the reaction zone, whereupon an asymptotic matching
of the inner and outer solutions will yield not only the aforementioned jump conditions, but
also the burning-rate eigenvalue as well. In connection with this procedure, it is convenient,
and physically appealing, to attempt a representation of the reaction-rate terms in (31) and
(32) as delta-function distributions with respect to the outer spatial variable � ([12, 13]). As
a result, using the results (55) and (56), we may write the governing system of equations for
the outer solution variables Y 0 and T 0 as

r̂(Y 0 � 1) =
l̂

b̂
Le�1 dY 0

d�
; � < 0; (57)

d
d�

[(�0 � �s + r̂�s)Y
0 � �0] =

l̂

b̂
Le�1 d

d�

 
�0 dY

0

d�

!
� Pg�(� � �r �H); � > 0; (58)

1
r

d�0

d�
= Pl�(� � �r); � > 0; (59)

(1� �s + r̂b̂�s)(T
0 � 1) = (1� �s + l̂�s)

dT 0

d�
; � < 0; (60)

and

[b(1� �0) + b̂(�0 � �s + �sr̂)]T
0 + (�0 � �s + �sr̂)QgY

0 = [l(1� �0) + l̂�0]
dT 0

d�

+Qg
l̂

b̂
Le�1�0 dY 0

d�
� (1� �0)(Ql +Qg) + b̂(1� �s + �sr̂)Tb; � > 0; (61)

where Pl and Pg are the source strengths of the reaction-rate distributions placed at � = �r
and � = �r +H , respectively. These quantities, along with the separation distance H , are to
be determined, where the ability to do so validates the delta-function representation of the
reaction rates, at least to the order of analysis considered here. We note that the O(1=�) width

engiab4.tex; 16/07/1997; 6:59; v.6; p.14



A deflagration analysis of porous energetic materials 187

of the merged reaction zone implies that H is of this order (or smaller) as well, and in fact we
will eventually seek H as an expansion in inverse powers of �.

The solution of Equations (57)–(61) subject to the melting conditions at � = 0 and the
boundary conditions at � = �1 is straightforward. In particular, we find that Pl and Pg are
given by

Pl(1� �s)=r; Pg = 1� �s + r̂�s; (62)

where, for example, the first of these follows from (55) and the integral of (59) from � = ��r
to � = �+r . The outer solutions Y 0 and T 0 are then determined in terms of H as

Y 0(�) =

8>>><
>>>:

1� exp[�(1� �s + r̂�s)b̂LeH=l̂] exp[r̂b̂Le (� � �r)=l̂]; � < �r;

1� exp[(1� �s + r̂�s)b̂Le (� � �r �H)=l̂]; �r < � < �r +H;

0; � > �r +H;

(63)

T 0(�) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1 + (Tm � 1) exp

"
1� �s + r̂b̂�s

1� �s + l̂�s
�

#
; � < 0;

B + (Tm �B) exp

"
b(1� �s) + r̂b̂�s

l(1� �s) + l̂�s
�

#
; 0 < � < �r;

B1 + (Tb �B1) exp

"
b̂

l̂
(1� �s + r̂�s)(� � �r �H)

#
; �r < � < �r +H;

Tb = B1 +Qg=b̂ � > �r +H;

(64)

where

B �
(1� �s)(1 + s) + r̂b̂�s

b(1� �s) + r̂b̂�s
; B1 �

(1� �s)(Ql + 1 + s) + r̂b̂�s

b̂(1� �s + r̂�s)
: (65)

The location �r of the reaction zone, which appears as a sheet on the scale of the outer variable
�, is thus determined by (64) from continuity of T at � = H as

�r =
l(1� �s) + l̂�s

b(1� �s) + r̂b̂�s
log

(
B1 �B + (Tb �B1) exp [�b̂(1� �s + r̂�s)H=l̂]

Tm �B

)
: (66)

A sketch of the outer solution is exhibited in Figure 1.
We remark that since H . O(1=�) and the interval �r < � < H thus lies within the

merged reaction zone, that portion of (63) and (64) that actually represents the outer solution
is the solution for � < �r and � > �r +H . Consequently, Equations (63) and (64) imply an
O(H) jump in the outer solutions Y 0 and T 0 across the reaction zone [i.e. from � = ��r to
� = (�r +H)+]. We can motivate this directly by noting that for H small, an expansion of
the delta-function �(� � �r �H) in (58) about H = 0 introduces the derivative of the delta-
function, �0(�� �r) (see [13]). The latter implies a higher order singularity (discontinuities in
the variables Y 0 and T 0 themselves) at � = �r than that which occurs when H is identically
zero, in which case Y 0 and T 0 are continuous and only their derivatives (e.g. dY 0=d� and
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dT 0=d�) are discontinuous there. The need to allow for the possibility of such higher order
discontinuities across the reaction zone either directly (see [14]) or through the introduction
of generalized functions as in the present work, is one distinguishing feature of asymptotic
formulations of multi-step combustion waves relative to their single-step counterparts. The
actual values of these discontinuities, as we determined here by the value of the separation
distanceH , as well as the burning-rate eigenvalue itself, are calculated by matching the above
outer solution to the inner solution of the reaction-zone problem, which we now consider.

6. Reaction-zone solutions

The determination of the burning-rate eigenvalue �l and the separation distance H , as well as
the spatial evolution of the variables �; ug; Y and T within the reaction zone (which are all
discontinuous on the scale of the outer variable �), requires an inner analysis of the chemical
boundary layer that lies in the vicinity of �r. We thus introduce a stretched inner variable �,

� = �(� � �r); (67)

where the Zel’dovich number � � 1 was defined by the second of (54). For convenience, we
also define a normalized temperature variable � as

� =
T � 1
Tb � 1

; (68)

and seek solutions in the form of the expansions

� � �0 + ��1�1 + ��2�2 + � � � ; ug � u0 + ��1u1 + ��2u2 + � � � ; (69–70)

Y � ��1y1 + ��2y2 + � � � ; � � 1 + ��1�1 + ��2�2 + � � � ; (71–72)

�l � �(�0 + ��1�1 + ��2�2 + � � �); H � ��1h1 + ��2h2 + � � � ; (73–74)

where the coefficients in the expansion of ug are calculated in terms of the �i; yi and �i from
(56), which is also valid in the reaction zone. At this point, we also order the nondimensional
rate-coefficient ratio �g=�l as

�g

�l
= r̂(~�ug )

n�1
~Ag

~Al

exp[(1� �)Nl] � �n�; (75)

where � is the activation-energy ratio defined by the first equation of (54) and � is an analogous
O(1) parameter that defines the scaled value of the rate-coefficient ratio. The scaling embodied
in (75) is required, given (54), to construct an inner solution that corresponds to a merged
reaction zone. As discussed below (54), different scalings are permissible, but would generally
correspond to separated reaction zones for the condensed- and gas phase reactions (see [5]).

Substituting the above inner expansions in (31), (32) and (53), we find that the governing
equations for the leading-order inner variables �0; y1 and �1 are given by

d�0

d�
= r�0(1� �0)e

�1 ; (76)
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[l + (l̂ � l)�0]
d�1

d�
+

l̂Qg

b̂Le (Tb � 1)
�0

dy1

d�
=

(b� b̂)Tb +Ql +Qg

Tb � 1
(1� �0); (77)

l̂

b̂
Le�1 d

d�

�
�0

dy1

d�

�
= �

d�0

d�
+ �(wTb)

�n�0(�0y1)
ne��1 : (78)

Solutions to these inner equations as � ! �1 must match with the outer solution (55), (63)
and (64) as � " ��r and as � # (�r +H)+, respectively. This leads to the matching conditions

�0 ! 1; �1 ! 0; y1 ! 0 as � ! +1; (79)

and

�0 ! �s; �1 � E1� +E2h1; y1 �
b̂

l̂
Le [�r̂� + (1� �s + r̂�s)h1] as � �1; (80)

where the coefficients E1 and E2 in the second equation of (80) are defined as

E1 =
Tb �B

Tb � 1
�
b(1� �s) + r̂b̂�s

l(1� �s) + l̂�s
; E2 = �

Tb �B1

Tb � 1
�
b̂

l̂
(1� �s + r̂�s): (81)

Solution of the complete inner problem given by (76)–(81) will only be possible for certain
values of h1 and �0, which thus play the role of eigenvalues. The determination of �0, the
scaled leading-order coefficient in the expansion of the burning rate eigenvalue, is the main
result to be obtained from the analysis that follows.

We simplify the problem defined by (76)–(81) somewhat by employing �0 as the inde-
pendent variable. Thus, using (76), we may write the remaining Equations (77) and (78)
as

[l + (l̂ � l)�0]e
�1

d�1

d�0
+

l̂Qg

b̂Le (Tb � 1)
�0e

�1
dy1

d�0
=

(b� b̂)Tb +Ql +Qg

(Tb � 1)r�0
; (82)

r�0
l̂

b̂
Le�1 d

d�0

�
�0(1� �0) e�1

dy1

d�0

�
= �1 +

�

r
(wTb)

�n (�0y1)
n

1� �0
e(��1)�1 : (83)

Since a closed-form solution to this system is not readily apparent, we restrict further analytical
development to a perturbation analysis of (82) and (83) in the limit that Qg is small relative
to Ql, corresponding to the assumption that most of the heat release occurs in the first stage
of the two-step reaction process. We remark, however, that this implies that at least some of
the initial exothermic gas-phase decomposition reactions should be bumped with the overall
reaction (1a), regarding the resulting decomposition products as the gas-phase intermediates
I(g). Thus, we formally define the small parameter � � Qg, where O(��1) � � � O(1),
and seek solutions to the leading-order inner problem in the form

�0 � �0
0 + ��1

0 + �2�2
0 + � � � ; y1 � y0

1 + �y1
1 + �2y2

1 + � � � ; (84–85)

�1 � �0
1 + ��1

1 + �2�2
1 + � � � ; �0 � �0

0 + ��1
0 + �2�2

0 + � � � ; (86–87)

h1 � h0
1 + �h1

1 + �2h2
1 + � � � : (88)
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In addition, we observe from the expression for Tb in (64) that Tb = B1 + �=b̂.
Substituting these latest expansions in (82) and (83), we readily see that a subproblem

for �0
0 and �0

1 decouples from the full leading-order problem (with respect to �), and that it
is identical in form to that obtained for the single-step analysis corresponding to the global
reaction scheme R(c)! P (g) ([7]). In particular, we obtain from (76) and (82)

[l + (l̂ � l)�0
0] e

�0
1

d�0
1

d�0
0

=
(b� b̂)B1 +Ql

(B1 � 1)r�0
0

; (89)

d�0
0

d�
= r�0

0(1� �0
0) e�

0
1 ; (90)

subject to

�0
0 ! 1; �0

1 ! 0 as � +1;

�0
0 ! �s; �0

1 � E0
1� as � ! �1;

(91)

where E0
1 is given by the first equation of (81) with Tb replaced by its leading-order approxi-

mation B1. Equation (89) is readily integrated from �0
0 = �s (at � = �1) to any �0

0 6 1 (at
� = +1) to give

e�
0
1(�

0
0) =

(b� b̂)B1

(B1 � 1)r�0
0

Z �0
0

�s

d��

l + (l̂ � l)��
: (92)

Evaluating (92) at �0
0 = 1 (at which �0

1 = 0), we thus determine the leading-order coefficient
�0

0 in the expansion of the burning-rate eigenvalue as

�0
0 =

8>>>><
>>>>:

(b� b̂)B1 +Ql

(B1 � 1)r(l̂ � l)
log

"
l̂

l + (l̂ � l)�s

#
; l 6= l̂;

(b� b̂)B1 +Ql

(B1 � 1)rl
(1� �s); l = l̂:

(93)

Substituting this result in (92) for arbitrary �0 and performing the indicated integrarion, we
thus obtain

�0
1(�

0
0) =

8>>>>><
>>>>>:

log

 
log[l + (l̂ � l)�0

0]� log[l + (l̂ � l)�s]

log l̂ � log[l + (l̂ � l)�s]

!
; l̂ 6= l;

log

 
�0

0 � �s

1� �s

!
; l̂ = l:

(94)

The determination of �0
0(�), and hence �0

1(�), then follows directly from (90). For example,
when l̂ = l (equal gas and liquid thermal conductivities), we obtain

�0
0(�) =

�s + expfl�1[(b� b̂)B1 +Ql](1� �s)�=(B1 � 1)g

1 + expfl�1[(b� b̂)B1 +Ql](1� �s)�=(B1 � 1)g
; (95)

where the second of the matching conditions (91) has been used to evaluate the constant of
integration.
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The first approximation, Equation (93), for the burning-rate eigenvalue is independent of
the effects of the second reaction (1b), which has been assumed to have a relatively small
thermal effect. Consequently, the first effects of the two-step mechanism on the burning
rate appear at O(�), which, from (87), requires the calculation of �1

0. We thus proceed by
first calculating the leading-order mass fraction variable y0

1, which is determined from the
leading-order version of (83). For additional simplicity, we restrict further consideration to
the parameter regime

�s = �1
s�; l̂ = l + �l̂1; � = 1 + ��1; (96)

corresponding to O(�) values of the initial porosity, O(�) differences in the conductivities of
the condensed and gaseous phases, andO(��) differences in the activation energies of the two
reaction steps. In addition, we consider only the case of a first-order gas-phase reaction (i.e.
n = 1), and assume that

�

rw�0
0T

0
b

�
b̂Le
rl

= 1 + ��1; (97)

where T 0
b = (Ql + 1 + s)=b̂ is the leading-order approximation to Tb with respect to � in

the above parameter regime. The parameter group on the left-hand side of Equation (97) is a
gas-to-liquid ratio of diffusion-weighted reaction rates, where we may interpret the latter as
characteristic measures of the rate of depletion of the reacting species, taking into account
both chemical reaction and, for the gas phase, species diffusion. Such quantities appear to
arise naturally in the analysis of multi-step flames, and, based on the above interpretation,
have been referred to as consumption rates (see [12, 13]). The fact that larger gas-phase Lewis
numbers are associated with higher rates of depletion of the gaseous reactant stems from the
higher concentration of this species in the reaction zone that results from smaller values of the
gas-phase mass diffusivity.

In the parameter regime just outlined, the expressions (93) and (94) for �0
1 and �0

0 simplify
to

�0
1 = log�0

0; �0
0 =

bQl + (b� b̂)(1 + s)

rl(Ql + 1 + s � b̂)
; (98)

where, for �s � O(�), Equation (95) implies

�0
0(�) =

exp(r�0
0�)

1 + exp(r�0
0�)

; (99a)

or

� =
1
r�0

0
log

 
�0

0

1� �0
0

!
: (99b)

Consequently, the leading-order version of Equation (78) for y0
1 as a function of �0

0 is given
by

d2y0
1

d�02

0

+

 
2

�0
0
�

1

1� �0
0

!
dy0

1

d�0
0
�

y0
1

�0
0(1� �0

0)
2
= �

b̂ Le

rl�0
0
�

1

(�0
0)

2(1� �0
0)
; (100)
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subject to y0
1 ! 0 as �0

0 ! 1 and an appropriate matching condition as �0
0 ! 0. The latter,

however, cannot be obtained directly from (80) because that equation was derived under the
assumption that �s 6= 0, whereas to leading order in �; �s is equal to zero. Indeed, at this
order, the outer solution (63) for Y 0 has no meaning for � < 0, since there is no gaseous phase
in this region at this order of approximation. To derive the appropriate matching conditions
on the inner mass fraction variables y0

1 and, for later use, y1
1, we consider a new variable Z ,

defined as the mass fraction of the intermediate gas-phase species with respect to the total
mass of all species, gaseous and condensed, at a given point. Thus, Z is defined in terms of
the variables already introduced as

Z =
r̂��gY

r̂��g + r(1� �)
=

r̂�Y

r̂�+ r(1� �)[Y + w(1� Y )]T
; (101)

where we have used the equation of state (37) to obtain the second equality. However, unlike
Y , the variable Z is physically unambiguous in the limit that � ! 0, where it must vanish.
From (101) applied to the reaction zone, Z has the asymptotic development

Z � ��1

"
r̂(�0

0 + ��1
0 + � � �)(y

0
1 + �y1

1 + � � �)

r̂(�0
0 + ��1

0 + � � �) + r(1� �0
0 � ��1

0 � � � �)w(T
0
b + �T 1

b + � � �)

#
+O(��2)

� ��1

"
r̂�0

0y
0
1

r̂�0
0 + r(1� �0

0)wT
0
b

#
(102)

+���1

(
r̂(�0

0y
1
1 + �1

0y
0
1)

r̂�0
0 + r(1� �0

0)wT
0
b

�
r̂�0

0y
0
1[(r̂ � rwT 0

b )�
1
0 + r(1� �0

0)wT
1
b ]

[r̂�0
0 + r(1� �0

0)wT
0
b ]

2

)
+ � � � ;

where, from the last equation of (64) and (65) and the first equation of (96), T 0
b and T 1

b are
defined by

Tb � T 0
b + �T 1

b + � � � ; T 0
b = (Ql + 1 + s)=b̂; T 1

b = b̂�1 � r̂(T 0
b � 1)�1

s: (103)

On the other hand, form the outer solution (55), (63) and (64) and the fact that �s = ��1
s, the

behavior of Z in the outer preheat region in the limit � " ��r , is, in terms of the inner variable
�, given by

Z � ���1 r̂�
1
sb̂ Le

rwT 0
b l

(�r̂� + h0
1): (104)

Thus, requiring the inner expression (102) for Z to match with the outer expression (104) in
the limit � ! �1, we equate like-order terms to arrive at the matching conditions

�0
0y

0
1 ! 0 as �0

0 ! 0 (105)

and

�0
0y

1
1 � ��

1
sy

0
1 + �1

s

b̂Le
l

 
�

r̂

r�0
0

log�0
0 + h0

1

!
as �0

0 ! 0; (106)

engiab4.tex; 16/07/1997; 6:59; v.6; p.20



A deflagration analysis of porous energetic materials 193

Figure 3. Inner structure of the leftward-propagating deflagration wave. Curves were drawn for the parameter
regime analyzed in Section 6, based on the parameter values used in Figure 1 (the latter imply that the scaled
parameters �1

s = �s=Qg = 0.5 and l̂1 = (l̂� l)=Qg = �0.4).

where we have used Equation (99b) to write these conditions in terms of �0
0 as �0

0 tends to
zero, and have used (105) and the fact that �1

0 ! �1
s in this limit to obtain the final form of

(106).
Proceeding with the solution for y0

1, we observe that homogeneous solutions of (100) are
(�0

0)
�1(1� �0

0) and (�0
0)
�1(1� �0

0)
�1, whence a particular solution may be constructed in a

standard fashion (e.g., by use of the variation of constants formula). In this way, the general
soution of (100) is determined as

y0
1 = c1

1� �0
0

�0
0

+ c2
1

�0
0(1� �0

0)
�

b̂Le

2rl�0
0

"
1� �0

0

�0
0

log

 
1� �0

0

�0
0

!
+

log�0
0 � �0

0

�0
0(1� �0

0)

#
;(107)

where c1 and c2 are arbitrary constants of integration. Applying the boundary condition at
�0

0 = 1, we conclude that c2 = �b̂Le=2rl�0
0, while requiring that the condition (105) be

satisfied gives c1 = �c2. Thus, y0
1 is given by

y0
1 = �

b̂Le

2rl�0
0

"
1 +

1� �0
0

�0
0

log

 
1� �0

0

�0
0

!
+

log�0
0

�0
0(1� �0

0)

#
; (108)

which completes our analysis of the leading-order reaction-zone problem. We observe that,
although �0

0y
0
1 approaches zero in the limit that �0

0 becomes small, as required by (105), the
variable y0

1 itself is unbounded in that limit, exhibiting the behavior y0
1 � �(b̂ Le=rl�0

0) ln�0
0

as �0
0 ! 0. Profiles of the leading-order inner variables are shown in Figure 3, where the

relationship (99a) for �0
0(�) was used to exhibit these variables as functions of �.

The reaction-zone problem at the next order (with respect to �) is obtained by collecting
terms of order �when the expansions (84)–(88), (96) and (97) are substituted in (76)–(80). This
results in a problem for the inner variables �1

0; y
1
1 and �1

1 introduced in Equations (84)–(86)
and the coefficients �1

0 and h0
1 that appear in the corresponding expansions (87) and (88) for

the eigenvalues �0 and h1. In particular, we obtain

d�1
0

d�
= r[�0

0(1� �0
0)�

1
1 +�1

0(1� �0
0)� �0

0�
1
0] e

�0
1 ; (109)

l
d�1

1

d�
+ l̂1�0

0
d�0

1

d�
+

l

b̂ Le (T 0
b � 1)

�0
0

dy0
1

d�
= �C0�

1
0 +C1(1� �0

0); (110)
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l

b̂
Le�1 d

d�

 
�0

0
dy1

1

d�
+ �1

0
dy0

1

d�

!
+
l̂1

b̂
Le�1 d

d�

 
�0

0
dy0

1

d�

!
+

d�1
0

d�
=

r2l�0
0

b̂Le

" 
�1 �

T 1
b

T 0
b

!
�0

0 +�1
0

#
�0

0y
0
1 e�

0
1+

r2l

b̂Le
(�0

0)
2[�1

0y
0
1+�

0
0y

1
1+�

0
0y

0
1(�1�

0
1+�

1
1)] e

�0
1 ;(111)

subject to the matching conditions

�1
0 ! 0; �1

1 ! 0; y1
1 ! 0 as � ! +1; (112)

�1
0 ! �1

s; �1
1 � E1

1� +E1
2h

0
1; �0

0y
1
1 � �1

s

b̂Le
l

[(1� r̂)� + h0
1] as � ! �1; (113)

where we have used the behavior of y0
1 indicated below Equation (108) to simplify the matching

condition (106) on �0
0y

1
1 as � � (r�0

0)
�1 log�0

0 ! �1. Here, from the last of Equations (64)
and (65) and the first Equation of (96), the coefficients C0; C1, E1

1 and E1
2 are given by

C0 =
(b� b̂)T 0

b +Ql

T 0
b � 1

= rl�0
0; C1 =

T 0
b � 1� T 1

b (Ql + b� b̂)

(T 0
b � 1)2

; (114)

E1
1 =

�1
s(r̂b̂� b)

l
+

[�1
s(T

0
b � 1) + T 1

b ](1 + s � b)

l(T 0
b � 1)2

; E1
2 = �

1
l(T 0

b � 1)
; (115)

where T 0
b and T 1

b were defined in (103). We observe that T 1
b , and henceC1 and E1

1 , all depend
on �1

s, reflecting, to this order of approximation, a linearly decreasing dependence of the
burned temperature on the initial porosity for small values of the latter.

It is again convenient to use a volume-fraction variable(in this case, �0
0) as the independent

variable, which transforms (109)–(111) into a somewhat simpler form. In particular, from
(99), we obtain the transformation rule

d
d�

= r�0
0�

0
0(1� �0

0)
d

d�0
0
; (116)

which, along with the expressions (98a) and (108) for �0
1 and y0

1, results in the transformed
system

d�1
0

d�0
0
+

�1
0

1� �0
0
= �1

1 +
�1

0

�0
0
; (117)

rl�0
0�

0
0(1� �0

0)
d�1

1

d�0
0
+ C0�

1
0 = C1(1� �0

0)� rl̂1�0
0�

0
0(1� �0

0)

+
1

2(T 0
b � 1)

"
�0

0 � (1� �0
0) log (1� �0

0) +
(�0

0)
2

1� �0
0

log�0
0

#
; (118)
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d2y1
1

d�02

0

+

 
2
�0

0
�

1
1� �0

0

!
dy1

1

d�0
0
�

y1
1

�0
0(1� �0

0)
2

=
b̂Le

2rl�0
0
�

1
(�0

0)
2(1� �0

0)

d
d�0

0

(
�1

0

"
�1�

1� �0
0

�0
0

log (1� �0
0) +

�0
0

1� �0
0

log�0
0

#)

+
l̂1

l
�
b̂Le

2rl�0
0
�

1

(�0
0)

2(1� �0
0)

"
2� �0

0

1� �0
0
+ log(1� �0

0) +
�0

0(2� �0
0)

(1� �0
0)

2
log�0

0

#

�
b̂Le

2rl�0
0

�
1

�0
0(1� �0

0)
2

 
�1 �

T 1
b

T 0
b

+
�1

0

�0
0

+
�1

0

�0
0

+ �1
1 + �1 log�0

0

!

�

"
1 +

1� �0
0

�0
0

log

 
1� �0

0

�0
0

!
+

log�0
0

�0
0(1� �0

0)

#
; (119)

subject to

�1
0 ! 0; �1

1 ! 0; y1
1 ! 0 as �0

0 ! 1; (120)

�1
0 ! �1

s; �1
1 �

E1
1

r�0
0

log�0
0 +E1

2h
0
1;

�0
0y

1
1 � �1

s

b̂Le
l

 
l � r̂

r�0
0

log�0
0 + h0

1

!
as �0

0 ! 0: (121)

Solution of the subsystem (117) and (118) for �1
0 and �1

1, subject to the above matching
conditions, will determine the burning rate eigenvalue �1

0, while the subsequent solution of
(119) for y1

1 will, from the last matching condition in (121), determine the separation-distance
coefficient h0

1.
The solution for �1

0 and �1
1 proceeds as follows. Multiplying (117) by the integrating factor

(1� �0
0)
�1, we may rewrite this equation as

d
d�0

0

 
�1

0

1� �0
0

!
=

1
1� �0

0

 
�1

1 +
�1

0

�0
0

!
; (122)

Then, dividing (118) by 1��0
0 and differentiating with respect to �0

0, we may substitute (122)
in the result to obtain a single second-order equation for �1

1 given by

d2�1
1

d�02

0

+
1
�0

0

d�1
1

d�0
0

+
�1

1

�0
0(1� �0

0)

=
1

rl�0
0(T

0
b � 1)

"
1

�0
0(1� �0

0)
2
+

log�0
0

(1� �0
0)

3

#
�

�1
0=�

0
0

�0
0(1� �0

0)
�
l̂1=l

�0
0
; (123)
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where we have used the fact that C0 = rl�0
0. Homogeneous solutions of (123) are 1 � �0

0
and (1��0

0) log [�0
0(1��0

0)
�1] + 1. To obtain a particular solution, we first introduce a new

variable v defined by �1
1 = (1��0

0)v, where, by substituting this form of the solution in (123),
we find that dv=d�0

0 � u satisfies the first-order equation

du
d�0

0
+

1� 3�0
0

�0
0(1� �0

0)
u =

RHS123

1� �0
0
; (124)

where ‘RHS123’ denotes the inhomogeneous right-hand side of Equation (123). Multiplying
Equation (124) by the integrating factor �0

0(1� �0
0)

2, we may rewrite that equation as

d

d�0
0
[�0

0(1� �0
0)

2u] = �0
0(1� �0

0)(RHS123): (125)

Integrating the latter, we obtain a particular integral up as

up =
dvp
d�0

0
=

1
�0

0(1� �0
0)

2

(
1

rl�0
0(T

0
b � 1)

"
�0

0

1� �0
0

log�0
0 � Li2(1� �0

0)

#

�
�1

0

�0
0
�0

0 +
l̂1

2l
(1� �0

0)
2

)
; (126)

where we have introduced the dilogarithm function Li2(�), which is defined for all complex
� by

Li2(�) = �

Z �

0

log(1� ��)

��
d�� =

1X
j=1

�j

j2 ; (127)

where the latter form of the representation is convergent for j�j 6 1 (see [18]). In the real
domain of interest here (0 6 � 6 1), Li2(�) is a monotonic function that ranges from
Li2(0) = 0 to Li2(1) = �2=6. In what follows, it will also be convenient to introduce the
trilogarithm Li3(�) where, generally speaking, the polylogarithms Lin of order n > 2 are
defined as

Lin(�) =
Z �

0

Lin�1(��)

��
d�� =

1X
j=1

�j

jn
(128)

(see [18]). Thus, integrating (126), we obtain the general solution for �1
1 as

�1
1 = c1

"
1 + (1� �0

0) log

 
�0

0

1� �0
0

!#
+ c2(1� �0

0)�
�1

0

�0
0
+
l̂1

2l
(1� �0

0) log�0
0

+
1

rl�0
0(T

0
b � 1)

(
1
2

"
log�0

0

1� �0
0
� (1� �0

0) log

 
�0

0

1� �0
0

!
� 1

#

�

"
�2

6
+ Li2(�

0
0)

#
(1� �0

0) log�0
0 + (1� �0

0)[2 Li3(�
0
0) + Li3(1� �0

0)]

�Li2(1� �0
0) + (1� �0

0) log (1� �0
0) + �0 log�0

0

)
(129)
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where c1 and c2 are constants of integration, and where we have used the identity

Li2(�) + Li2(1� �) =
�2

6
� log� log(1� �) (130)

to evaluate
R �0

0 ��1 Li2(1 � �) d�. Applying the matching conditions (120) and (121), we
thus obtain a set of relations for c1; c2;�

1
0 and h0

1 given by

c1 �
�1

0

�0
0
=

1
rl�0

0(T
0
b � 1)

; c1 +
l̂1

2l
=

1
r�0

0

"
�2

6l(T 0
b � 1)

+E1
1

#
; (131–132)

c1 + c2 �
�1

0

�0
0
+

h0
1

l(T 0
b � 1)

=
1

rl�0
0(T

0
b � 1)

"
�2

6
+

1
2
� Li3(1)

#
; (133)

where we have used the fact that Li2(1) = �2=6 and Li3(1)
:
= 1�20205690. Thus, from (131)

and (132), the O(�) coefficient �1
0 in the expansion of the burning-rate eigenvalue is given

uniquely by

�1
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1

rl(T 0
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� 1
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1
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�0

0; (134)

where E1
1 was defined by (115), and the constants of integration c1 and c2 are given explicitly

as

c1 =
�2

6rl�0
0(T

0
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+
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1
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0
�
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1
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; (135)

where the latter depends on h0
1, which is still to be determined.

Having thus determined �1
1(�

0
0) and �1

0, we may readily solve (117) for �1
0. In particular,

multiplying that equation by the integrating factor (1� �0
0)
�1, we may rewrite (117) as

d
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0

1� �0
0

!
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0
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0

�0
0

!
: (136)

Substituting the previous results in the right-hand side of (136) and performing an integration,
the general solution for �1

0 is determined as

�1
0 = c3(1� �0

0) + (1� �0
0)

"
c1�

0
0 log
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0
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0 log�0
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)
; (137)
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where the first term is the homogeneous solution and c3 is the constant of integration. We
observe that the matching condition (120a) as �0

0 ! 1 is identically satisfied by this solution,
whereas the matching condition (121a) as �0

0 ! 0 determines c3 as

c3 = �1
s �

�2

6rl�0
0(T

0
b � 1)

: (138)

Profiles of �1
0 and �1

1 are exhibited in Figure 3, where the fact that, in the parameter regime
considered here, h0

1 = 1� r̂ = 0 (see below) has been used to determine uniquely the constant
of integration c2 that appears in the expressions (129) and (137) for these variables.

Having obtained the solutions for �1
1 and �1

0 as functions of �0
0, we may now solve (119)

explicitly for y1
1 subject to the last of the matching conditions (120) and (121). Since the latter

is expressed in terms of �0
0y

1
1 it is convenient to introduce first the variable z1

1 � �0
0y

1
1, in

terms of which we may rewrite (119), using (117), as
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subject to

z1
1 ! 0 as �0

0 ! 1; z1
1 � �1

s

b̂Le
l

 
1� r̂

r�0
0

log�0
0 + h0

1

!
as �0

0 ! 0: (140)

Homogeneous solutions of (139) are (1 � �0
0) and (1 � �0

0)
�1. Using the latter, we may

seek a particular solution in the form z1
1 = (1� �0

0)
�1u. This leads to a first-order equation

for v � du=d�0
0, which, after multiplication by the appropriate integrating factor, may be

integrated to obtain an expression for v. A second integration then determines u, and hence
z1

1. Proceeding in this fashion, we construct the general solution for z1
1 as

z1
1 = (1� �0

0)
�1
Z �0

0

0
(1� �̂)

"Z �̂

0

RHS139(�)

�(1� �)
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#
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+D1(1� �0
0) +D2(1� �0

0)
�1; (141)

where ‘RHS139’ denotes the right-hand side of (139) andD1 andD2 are constants of integration
that lead to terms proportional to the homogeneous solutions. It is readily verified by detailed
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examination of the integrand in (141) near � = 0 and � = 1 that the only singularity in the
general solution is that associated with the homogeneous solution (1� �0

0)
�1. Consequently,

the first matching condition in (140) requires the choice

D2 = �(1� �0
0)
�1
Z 1

0
(1� �̂)

"Z �̂

0
��1(1� �)�1 RHS139(�)d�

#
d�̂;

so that the family of solutions that vanish as �0
0 ! 1 is given by
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#
d�̂+D1(1� �0

0): (142)

The second matching condition in (140), on the other hand, can only be satisfied if r̂ = 1
(or, more precisely, r̂ = 1 + r̂1�), since the general solution (141) exhibits no logarithmic
behavior as �0

0 approaches zero. In that case, evaluating (142) at �0
0 = 0, we determine the

constant D1 in terms of h0
1 as

D1 = h0
1 +

Z 1

0
(1� �̂)

"Z �̂
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��1(1� �)�1 RHS139(�) d�
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d�̂;

and the solution for z1
1 is thus given by
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; (143)

where the eigenvalue h0
1 appears to be undetermined, at least to this order in the analysis. This

apparent indeterminacy is resolved at the next order with respect to �, where, in constructing
the solution for z2

1 � �0
0y

2
1, we require that h0

1 = 0 in order to satisfy the matching conditions
at that order. Alternatively, the same conclusion may be reached when one considers that, for
nonzero porosities, the inner solution for the original mass-fraction variableY must ultimately
be matched to the outer solution (63). Thus, if h0

1 6= 0, then (143) implies that the original
mass-fraction variable y1

1 � �1
sl
�1b̂Leh0

1(�
0
0)
�1 as �0

0 ! 0, where (�0
0)
�1 � exp(�r�0

0�)
as the inner variable � ! �1. Since this would introduce exponential growth into the inner
solution for Y , whereas the outer solution (63), when expanded about � = ��r and written
in terms of �, indicates that only algebraic growth of the inner solution with respect to �
is compatible with asymptotic matching of the latter to the outer solution. Consequently,
we conclude that h0

1 = 0 in the parameter regime analyzed here. We remark that the same
argument could have been applied directly to the matching condition (121) to infer the above
restriction on the value of r̂.

We conclude this section by noting that the required restriction of r̂ to values that are
relatively close to unity, which corresponds to the assumption of high upstream gas-phase
densities, or pressures, has an obvious physical interpretation. In particular, the limit (97) of
approximately equal consumption rates for the condensed and gas-phase reaction for relatively
small gas-phase heat release is a distinguished limit for the merged-flame regime. That is,
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according to the expression for the gas-phase velocity given by (56), it limits the two-phase-
flow effect (i.e., the rate of gas-phase convective transport relative to the condensed phase) in
the preheat and reaction zones to that associated with thermal expansion of the gas. Larger
rates of gas-phase transport with respect to that in the condensed phase would cause the
gas-phase reaction to occur increasingly downstream of the condensed reaction, leading to a
breakdown in the merged flame structure analyzed here. It is anticipated that larger gas-phase
consumption rates would allow for larger gas-phase convective transport arising from smaller
upstream gas densities in the merged flame regime, but it would appear that the existence
of a merged-flame solution is highly sensitive to pressure (which determines r̂ through the
gas-phase equation of state) and the relative rates of reaction associated with the condensed
and gas-phase portions of the deflagration. These and other conclusions are supported by
direct numerical solutions of the reaction-zone problem given by (79)–(83) ([19]).

7. Discussion of the burning rate and conclusions

The dimensional propagation speed ~U , from the definition of �l given in Equation (27), is,
from (73) and (87), obtained as
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; (144)

where Tb, which appears in the definitions of the nondimensional activation energy Nl and
the Zel’dovich number �, has been expanded according to (103), and we have introduced
the �-independent definitions N0

l �
~El= ~R

0 ~T 0
b and �0 � (T 0

b � 1)N0
l =T

0
b . Substituting the

expressions (93b) and (134) for �0
0 and �1

0, respectively, and setting � equal to its definition
Qg, we obtain the asymptotic expression for the burning rate, in the specific merged-flame
parameter regime considered here, as
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; (145)

where we have used the expression for T 1
b given in (103). The first effects of heat release

associated with the second step of the reaction model (1) are therefore obtained by studying
the terms proportional to Qg in (145).

The dominant effects associated with gas-phase heat release are contained in the exponential
factor whose argument is proportional to Qg�

0, which, since ��1 � Qg � 1 in our analysis,
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Figure 4. Approximate nondimensional propagation speed U = ~U(Qg; �s)= ~U(0; 0) as a function of �s = �1
sQg

for Qg = 0�1 (solid), 0�2 (dash), 0�3 (chain-dash), 0�4 (dot) and 0�5 (chain-dot), where the remaining parameter
values were taken to be the same as those used in the previous figures.

is an exponentially large factor unless �1
s = �s=Qg � b̂�1(T 0

b � 1)�1. Values of the porosity
less (greater) than this critical value thus produce a significant increase (decrease) in the
burning rate over that of a nonporous material governed solely by the condensed reaction,
corresponding to whether or not the perturbation QgT

1
b in the burned temperature, which

arises from nonzero porosity and the additional heat release associated with the gas-phase
reaction, is positive or negative. Since Qg is positive, the additional heat release associated
with the gas-phase reaction enhances the burning rate, but decreasing amounts of solid material
that correspond to increasing porosities result in lower overall heat release associated with the
condensed-phase reaction, resulting in a critical value of porosity for which these counteracting
effects balance. Plots of the nondimensional propagation speed U = ~U(Qg; �s)= ~U(0; 0) as a
function of Qg and �s are exhibited in Figure 4.

Although the dominant effect associated with nonzero porosity and a second gas-phase
reaction step is thus thermodynamic in nature, additional effects are revealed by those terms
arising from the correction Qg�

1
0 to the leading-order burning-rate eigenvalue �0

0, which give
rise to the last three terms within the curly brackets in (145). In particular, it is readily seen
that a value of the gas-phase thermal conductivity greater (less) than that of the liquid phase
tends to increase (decrease) the propagation speed, since larger values of l̂1 = (l̂ � l)=Qg

allow for greater heat transport from the reaction zone back to the preheat region, providing a
type of ‘excess enthalpy’ effect for the condensed phase portion of the reaction, which, in our
analysis, is responsible for most of the heat release. The non-thermodynamic effect of nonzero
porosity, as reflected by its scaled value �1

s, has either a negative or a positive effect on the
burning rate, depending on whether the difference in heat capacities b̂� b between the gas and
the melted material is positive or negative. Assuming the latter, which is the more typical case,
we are thus led to the conclusion that, thermodynamic effects aside, slightly porous materials
support a faster deflagration speed than their nonporous counterparts, partially overcoming
the opposite trend associated with lower burned temperatures described above.

In conclusion, the present analysis has sought to describe some of the effects associated with
the deflagration of porous energetic materials arising from two-phase-flow in the presence of a
multiphase sequential reaction mechanism. In contrast to previous work for the nonporous case
in which the condensed and gas-phase reactions were spatially separated [5], a merged-flame
parameter regime, in which both reactions are operative and proceed to completion in a single
thin reaction zone, was considered in the present study of a porous material. Following the
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formulation of the general reaction-zone problem, it was ultimately determined that additional
parameter constraints are required to support this type of structure. In particular, it was deduced
that the relative rates of consumption of the condensed and intermediate gaseous species imply
a corresponding restriction on the relative rates of convective transport in each phase in order
for a single merged flame structure to be maintained. The latter is controlled, at least in part,
by the pressure through the gas-phase equation of state. Thus, it was concluded that, when
the consumption rates associated with each reaction are approximately equal and most of
the heat release occurs in the first reaction step, the merged-flame structure corresponds to a
high-pressure regime in which the relative flow of gas with respect to the condensed material
arises primarily from thermal expansion of the gas in the preheat and reaction zones. This
result is consistent with typical experiments involving HMX and RDX that show the tendency
of the primary gas flame to move closer to the propellant surface as the pressure increases.
Further parametric studies are in progress and will be reported in future publications.
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