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A deflagration analysis of porous ener getic materials with two-phase
flow and a multiphase sequential reaction mechanism
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Abstract. A theoretical analysis for the unconfined deflagration of a porous energetic materia is developed for
atwo-step global reaction mechanism that consists of the condensed-phase combustion of the reactive materia
to produce gas-phase intermediates, followed by a gas-phase reaction that produces final gas-phase products. An
asymptotic approach is employed, leading to explicit formulas for the deflagration velocity in specific parameter
regimes. The results clearly indicate the influences of two-phase flow and the multiphase, multi-step chemistry
on the burning rate, and serve to further characterize the combustion behavior of a significant class of degraded
nitramine-type propel lants for which the present analysis is applicable.
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1. Introduction

The combustion behavior of porous energetic materials such as solid propellants is a subject
of increasing interest in the fields of propulsion and pyrotechnics. Thisinterest is motivated, at
least in part, by uncertainties with respect to both performance and safety when an energetic
material has either been in existence for an extended period of time and/or has been exposed
to an abnormal thermal environment at some point in its history. In such a situation, thereis
likely to be some degree of degradation in the chemical composition of the material, resulting
in a much higher porosity than that of the original pristine material, with the voids being
filled with intermediate gas-phase decomposition products. Thus, it is becoming increasingly
clear that, during combustion, two-phase-flow effects play an important role, both within
the degraded solid, as well as within a thin multiphase layer at the surface where finite-rate
exothermic reactions occur. As a result, the deflagration characteristics of such ‘damaged’
materials, with porosities as high as order unity, may differ significantly from those of the
pristine material due, at least in part, to greatly enhanced gas flow in the solid/gas preheat
region. The presence of gasin the porous solid in turn resultsin a more pronounced two-phase
effect in the multiphase surface layer, as, for example, in the commonly observed liquid melt
region of nitramine propellants, which are often characterized by extensive bubbling in an
exothermic foam layer. Indeed, the present analysis, along with several other recent studies
described below, is largely applicable to thislatter class of propellants.
Despitedifficultiesinherent in describing phenomenaassoci ated with two-phaseflow, there
have by now been a number of relatively complete formulations employing various types of
constitutive relations, which are generally required to close the governing system of equations
([1]). The process of analyzing such models presents significant challenges, not only because
of the variety of physical phenomenaassociated with such problems, but also from the greater
degreeof nonlinearity that arisesfrom the appearance of appropriate volume-fraction variables
that multiply each quantity associated with a particular phase. Although early two-phase work
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inthis areatended to circumvent some of the difficulties by treating the two-phase medium as
asingle phase with suitably ‘averaged’ properties ([2], [3]), the resulting models required the
velocity (and temperature) of each phaseto be the same, precluding many of the predominant
effects associated with combustion processes that involve two-phase flow. Indeed, some of
these concerns haverecently been addressed in several recent papers([4], [5],[6], [ 7], [8]. [9])-
Tobeabletofocusclearly on the effects of two-phaseflow, the description of the chemistry was
deliberately simplified. In particular, a one-step overall exothermic process, R(c) — P(g),
representing the direct conversion of the condensed (liquid) propellant to gaseous products,
was generally considered in the latter group of studies. However, in one of these studies,
[5], a somewhat more elaborate mechanism, motivated by knowledge of nitramine chemistry
and given by R(c) — P(g), R(c) < R(g),R(9) — P(g), was adopted, where R(g) isa
gaseous reactant. In each of these studies, the goal was to clarify certain fundamental two-
phase effects on steady, planar deflagrations and their stability. These effects specifically
included those associated with different velocities and, in several instances, temperatures for
each phase.

The motivation for the present work is to extend these previous studies by incorporating
both condensed- and gas-phase reactionsin the thin reaction region previously represented by
the simple one-step mechanism R(c) — P(g). The model and analysis differ from those in
[5], however, in that we consider a regime in which both types of reactions occur in the same
thin multiphase region, as opposed to considering a separated regime in which the gas-phase
reaction occurs downstream of the condensed-phasedecomposition. In particular, we consider
atwo-step processin which thefirst step consists of an overall condensed-phase reaction that
produces gas-phase intermediates, and the second step consists of the global reaction of
these gas-phase intermediates to produce final gas-phase products. This simple mechanism,
of course, is still an extreme approximation to the actual chemistry that transpires during
nitramine deflagration ([10], [11]), but as with the single-step studies referenced above, our
goal remains centered on assessing the role of two-phase flow on the structure and propagation
of thecombustion wave. In asense, the present study isthusamultiphase anal og to other single-
phase analyses of combustion waves in gases and solids that are governed by a sequential
reaction mechanism ([12], [13], [14], [15]).

2. Themathematical model

The physical problem of interest in the present study is described as follows. We consider an
unconfined environment in which the unburned and degraded porous solid lies generally to
the left, and the burned gas products lie to the right. Gas-phase intermediates are assumed to
be produced directly by condensed-phase reactions, and these, in turn, can react to form the
final combustion products according to

R(c) = I(g),  I(g9) = P(9), @

where R(c) denotesthe condensed (melted) reactant material, I(g) standsfor theintermediate
gas-phase species, and P(g) represents the final gas-phase products (Figure 1). The nonzero
porosity of the condensed material, which is an essential feature of the present analysis, is
likely to arise not by design, but through slow degradation of the original pristine material, due
either to some measure of metastability in the original material or to exposure to an abnormal
thermal environment at some point inits history. Asaresult, the unburned solid is now said to
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Figure 1. Outer structure of the leftward-propagating deflagration wave. The solid/gas region lies to the left of
¢ = 0, and the liquid/gas region to the right. The shaded area denotestheregion ¢, < £ < &, + H, which, despite
the explicit representation afforded by the outer delta-function formulation, actually lies within the inner reaction
zone. Theregion to theright of the reaction zone consists of purely gaseous products. Parameter values used were

b=r=Le=1l=1b=f=[=080a,=025Q, =5Q,=H =05, =—-02T,, =2

beina‘damaged’ state, and consequently, the intermediate gas-phase species are assumed to
fill the pores far upstream of the reaction. The present analysis considers the merged regime
in which both reactions occur within a single reaction zone (necessary conditions for this
to occur are given below), in contrast to a previous study [5] in which these reactions were
spatially separated. Thus, the deflagration wave, which moves from right to left, consists of
a solid/gas preheat region, the melting surface across which the condensed component of
the two-phase mixture undergoes a phase change, a liquid/gas preheat region, a relatively
thin (due to the realistic assumption of large activation energies) reaction zone in which all
the condensed-phase material and gas-phase intermediates are converted to gaseous products
according to (1), and finally, the burned region which, in reality, often corresponds to a dark
zone that separates the primary flame region from a secondary gas flame downstream. Since
the latter has relatively little influence across the dark zone on the primary reaction zone, it
has correspondingly little effect on the burning velocity and can therefore be suppressed in
the present type of deflagration analysis. In what follows, we will restrict attention to one
spatial dimension (z), and use the subscripts s, [ and ¢ to denote solid, liquid and gas-phase
quantities, respectively. The porous solid and intermediate gas-phase species thus extend to
Z = —o0, where conditions are denoted by the subscript u, while the product gases extend to
Z = 400, where conditions are identified by the subscript b. The appearance of atilde over a
symbol (e.g., ) will denote adimensional quantity.

A reasonable model, appropriate for describing this type of multiphase deflagration wave,
wasderived previously for the simpler case of asingle-step reaction mechanism R(c) — P(g)
inwhichthe condensed-phase reactant material was corverted directly into gas-phase products,
which were thus the only gas-phase species that existed in the model [7]. Here, however, we
wish to describe, in addition to the two-phase-flow effects that were the focus of the previous
work, the fundamental effects associated with separate condensed- and gas-phase reactions,
and multiple gas-phase species. Thus, as before, the governing system of equations consists
of conservation equations for mass, momentum and energy in the two-phase solid/gas and
liquid/gas regions to the left and right of the melting surface z = z,,,, but with an additional
species conservation equation associated with the mass fraction of one of the two classes of
gas-phase species (either intermediates or products). Denoting the gas-phase volume fraction
by «;, we may express continuity of each phaseintheregion z > ., separately for the liquid
and gas phases as
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21— @)p) + o1 )] = AL - )exp(~ B/ BT, 7> @)
0 (aBy) + o (apyiiy) = Aif(L BRT), &> 3
57(@Pg) + 5= (apytg) = Aip(1 — c)exp(—Ey/R°Th), & > T, 3)

where g, @, T and ¢ denote density, velocity, temperature and time, respectively. In addition,
we must also satisfy mass continuity of each gas-phase species. Denoting by Y and Y), the
mass fractions of the gas-phase intermediate and product species, respectively, we have by
definition Y, = 1 — Y, where the mass conservation equation for Y is given by

g, . o, . . 0 . =0Y < R
57\ WPeY) + oo (apyiyY) = o= (anD%> + Aipi(1 — a)exp(—E;/R°T)) @
—Ag(ap,Y )" exp(—E,/R°T,), &> &,

where 4, A, and E;, E, are the exponential reciprocal -time prefactors and the overall acti-
vation energies of the condensed (liquid) and gas-phase reactions, respectively; R° is the
universal gas constant and n is the order of the gas-phase reaction. For simplicity, we will
assume a constant value for g;, but we do alow for variationsin g,. Asin previouswork ([4],
[7]), the evaluation of the condensed-phaseArrheniusreaction rateisbased on conditions(e.g.,
temperature) in the liquid phase, and may be interpreted as a contribution to a constitutive
relation for that medium. In asimilar fashion, it is assumed here that the gas-phase reaction
rate is based on local conditions in the gas. For additional simplicity, we shall take A; and
A, to be constants, although for this type of global kinetic modeling, it may be reasonable to
assign a pressure, as well as atemperature, dependency to these coefficients.

It is convenient to eliminate the liquid-phase reaction termsin (3') and (4') by summing
each of these equationswith (2) to obtain the overall liquid/gas continuity equation

0 L
—(1—a)pty + apgig) =0, T > Ty, 3

i[(l— a)py —|—a,5g] O

ot

and

0 _ _ 0
8_t~[(1 —a)p+ apgY |+ 97 —=[(1—a)pity + apggY]

0 _ = 0Y < _ L
-2 (WQD%) ~ A (ap,Y ) ep(— B, | R°T,), &> Em. @)
In the solid/gas region & < Z,,, we assume for the solid phase a constant density p, and
zero velocity (us = 0), with « = «, aso constant in this region. The gas-phase continuity
equationsfor # < 7, are thusindependent of the solid phase and are given by

_ 0 - .
8_f(aspg) + %(aspgug) =0, <y, )

0 - 0 . 0 . ~0Y .
8_t~(aspgy) + %(aspgugy) = 9% <angD%> s T < T, (6)
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where the first of these denotes overall gas-phase continuity and the second describes mass

continuity of the intermediate gas-phase species. We observe that no reaction is assumed

to occur in the solid phase and, owing to the assumption of large activation energies in the

reaction-rate expressions (see below), the gas phaseis reactionless as well in this region.
Conservation of energy for each phasein the liquid/gasregion is given by

0 9. ) o,
8—£[P10z(1 —a)T)] + %[mcm(l —a)T)] - ore [Az(l )8_97;1]
= QA1 — )exp(—E/R°T)) + Kiy(T, — T)), &> &, @
O, =, 0, - 9 ([ 0T,
a_g(,OgcgozTg) + %(pgcgugaTg) ~ 5 ()\ a%)
= Qudy(opgY)" (- By Ty + 0% + KD =T), &> 50 @)

where ¢, A and  denote heat capacity (at constant volume for the liquid, and at constant
pressure for the gas, both assumed constant), thermal conductivity and pressure, respectively;
Ql and Qg denote the heat release for the condensed and gas-phase reactions at temperatures
T, and T}, respectively, and Klg is an interphase heat-transfer coefficient (cf. [4]), where
interphase heat transfer is assumed to be the dominant mode of thermal contact between
phases. As is evident from the placement of the reaction-rate termsin (7') and (8'), the heat
released by the condensed-phase reaction, Q;, is assumed to be deposited in the liquid, while
the heat released by the gas-phase reaction, Qg, Is assumed to be deposited in the gas. These
assignmentsrepresent constitutive types of assumptionsthat can be appropriately generalized,
although in the single-temperature limit considered below, the model becomes independent
of how the heat release is apportioned between the two phases. Replacing all [-subscripts
with s-subscripts, the corresponding equations in the reactionless solid/gas region 3 < Z,
are essentially the same as (7') and (8'), but without the reaction-rate terms and a different
interphase heat-transfer coefficient K. We note that, because of the small Mach number and
the generally small ratio of gas-to-liquid densities in the problems to be considered, no terms
involving the liquid pressure p, appear in (7'), and the gas pressure 55, depends only on ¢ in
(8'). We remark that the term involving 05, /0t originates from the contribution to the rate
of change of theinternal energy of the gas resulting from the sum of the rate of surface work
—9(«viigpy) /07 and the rate of volume work —p,0c/0t performed by the gas (see [7]).

It is again convenient to eliminate reaction-rate terms when possible, and consequently,
weuse (3') and (4') in (7') and in the overall liquid/gas energy equation that is obtained from
summing (7') and (8'). Thus, in place of (7') and (8'), we obtain the liquid and overall energy
eguations

11— @) (G + )] + S lprin(1 - 0)( @1+ )] — - [W >?aﬂ
=Ky (T, —T), &> im, 0
0

or [Pl(l @) (Ql + Qg + ClTl) + pgcx (QgY + éng)]



178 Sephen B. Margolis

8 ~ o~
+55 — [ (1— o) (Qu+ Qg + &T}) + pyiiga(QgY + EgTy)]
0 |- or, ~ 0T, oY Wy . -
—— 1-— — D m-
% l)q( a) % + Agax rr I+ Qgpg s +a 5 L > T (8)

In the reactionless solid/gas region, conservation of energy may thus be written in the form

0 -0 [ or,| - - -
8t[ ¢s(1— as)Ts] T 9% [As(l_ ) 8.’1)] K (T Ty), &<, )
0 a ... ~
at[ Es(1— )Ty + pyégasT,] + %(pgcgugaSTg)
L PN S/ I PR
= 9 [As(l as) i +>\ Qg 8:% + Qs o7’ T < Tm, (10)

where (10) describes overall energy conservation which we obtain by summing Equation (9)
for the solid and the corresponding equation for the gas phase.

Asdescribedin previouswork ([4], [7]), anal ogous equations may bewritten for momentum
conservation (see below), but they do not need to be introduced explicitly for the present class
of deflagration-type problems. As remarked above, the approximation of small Mach number
implies that the gas pressure p,, which is coupled to the other field variables through the
gas-phase equation of state, is independent of the spatial coordinate. In the present work, the
gasis assumed to beideal, whence

Pg = ﬁg(Y/WI +(1- Y)/WP)ROTga (1)

where W and Wp are the respective molecular weights of theintermediate and product gases.

Aside from initial and boundary conditions, which will be specified shortly, one addition-
al equation, such as an equation for either i, or 1, is required to close the above system.
One possibility is to invoke the simple assumption that 4, = @;, but the neglect of velocity
differences between the condensed and gas phases, though characteristic of early work (see
[2] and [3]), cannot account for potentially significant phenomena associated with convective
enthalpy transport by the gas relative to enthalpy transport in the condensed phases [16].
Moreover, such an assumption can be shown to be inconsistent with momentum conservation.
Indeed, a more careful analysis of gas and condensed-phase momentum, allowing for non-
equilibrium between the gas and condensed-phase pressures, was considered in [4], where it
was determined that a qualitatively correct approximation in the limit of small viscous and
surface-tension-gradient forcesis, for o = 0,

- —0%p,
Uy = =
ot

Ps
2 (1 s0) - ] , (12)

where s is a velocity-perturbation parameter that reflects the (opposing) contributions of
viscous and surface-tension-gradient effects. Equation (12) is the final result needed to close
the system. In thelimit that viscous and surface-tension-gradient effectsvanish, s — 0, which,
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for simplicity, is the case considered here. Some effects associated with nonzero values of this
parameter were studied previously in connection with the nonporous problem ([4], [6]).

The above equations now constitute a closed set for the variables o, iy, T;, Ty, T, py and
pg- Theproblemisthuscompletely determined onceinitial and boundary conditions(including
interface relations at z = z,,) are specified. In the present work, we will not be concerned
with theinitial-value problem, but only the long-time sol ution corresponding to an unconfined,
steadily propagating deflagration. Thus, 95/0t = 0in (8) and (10), and the required boundary
conditions are given by

a=a; for I <in,, (13)
iy —0, Y1 T,-Ts—T, a &— —o0, (14)
a—=1 py—py, Y0, T,—T,—T, a &— +oo, (15)

where the burned temperature T}, is to be determined, and, since Py is a constant for the
unconfined deflagration considered here, the boundary condition on pressure implies that
Py = P, everywhere. Finally, if & superscripts denote quantities evaluated at 7 = it the
continuity and jump conditions across the melting surface are

ﬁ; = :5;_7 Y= = Y+7 (16)
T, =1, Ty =1"=Tp, (17)

conservation of condensed- and gas-phase mass fluxes,

. dZ,\ N AT o (7
(1—as)ps <_T> =(1—-a")p <“l - W) ; (18)
__ dzy, . dz,,
Qg (Ug — F) = Oé+ (’U,;_ — F) s (19)
~ JY ~ Y
+ —_— —_ —_— =
a™D 9 s_st asD —- o 0, (20)

and conservation of condensed- and gas-phase enthal py fluxes,

- OT; - 0T, o dz,,
—_ ot i} _ _ -3 — _ —m
(1-a™)N o7 | . (1—as)As o7 | psYs(1— as) di
=z, T=Zm (21)
. . dz,, L dZ \1 =
+ [plcl(l —at) (u;r — F) — psCs(1— ay) <_F>] T,
- o7 < OT,
+ g _ 9 _
a’ g 9% . QsAg 9% o 0, (22)

where 7, is the heat of melting of the solid at temperature 7' = 0 (5, being negative when
melting is endothermic). From Equations (12), (18) and (19) we obtain the relations

. - dz
atal — asu; = _d—tzn

p at), ay—at =sat(1-at). (23-24)

(s —
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Consequently, in the limit s = 0 considered here, (23)—(24) reduce to the statement that
a = a4 and 4, are continuous across & = Z,,. Hence, from (20) and (22), 9Y /0% and
8Tg /0% are continuous there as well, and (21) reducesto

5 0T
7j+ 5 ai‘ ~ ~—

T=T

- 0T

di,,
5 N
Lo i

= psw[% + (& — &)T], s=0. (25)

3. Dimensionlessfor mulation of the steady-state problem

In the present work, we will confine our attention to the case of a steadily propagating
deflagration that propagates with the (unknown) speed U = —dz,, /dt, which is a convenient
characteristic velocity for the problem. Assuming constant values for heat capacities and
thermal conductivities, we then introduce the nondimensional variables

!

Ts,l,g _ WUg — ﬁg (26)

5602
g=PS" 5 4= P%Y g —9 =,
Pg

As As

T = —= Ul g = —=
) s,l,g ) l,9 I
T, U

where, from the equation of state (11) evaluated at = = —oo according to (14), the upstream
reference gas density f; is defined as p; = p,Wr/R°T,. In addition, the nondimensional
parameters

R T B T T B
Ps Ps As As Cs s csTy Wp

A ) ) E, E

Le= - ”{],, y Ql = ~Q”l’ ) Qg = ~Qg y Nl = = l" y Ng = = g~ ) (27)

pgDcy csTy, csTy, R°Ty, R°T,,

MK MK, XA Ao Ay (4™

ng = ~28~2 f927 Klg - ,:927~2lg"'27 Al = ~ f "’lzeiNl7 = %(/192)6*1\7%
pscsU rbpscsU psCsU pscsU

are defined, where n is the reaction order of the gas-phase reaction and Le is the Lewis
number associated with the gas phase. Having assumed a constant value for \,, we also
assume that ﬁgﬁ Is constant, which implies a constant Lewis number. Finally, we remark
that either A; or A, may be regarded as an appropriate burning-rate eigenvalue, since the
determination of either provides an expression for the propagation speed U. Indeed, since
Ag/N = 7(Ag/As)(py)™ teN—No, we shall, for definiteness, regard A; as the burning-rate
eigenvalue.

To analyze the case of a steadily propagating deflagration, it is convenient to transform
to the moving coordinate ¢ = x + t whose origin is defined to be z,,. Introducing the
above nondimensionalizations and coordinate transformation into the problem formulated in
the previous section, we obtain, after setting time derivatives to zero, the steady eigenvalue
problem

d
glrolug + 1] =0, <0, (28)
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d—é_[’l"ng(Ug + 1)] = lx) Le d—é_z, f < O, (29)
d
df[ r(1—a)(u + 1)+ fapg(ug +1)] =0, & >0, (30)
d .
d—g[rang(ug +1) +7r(1—o)(u + 1)]
I ,d/ dy .
=ttt g (0l ) ~ AulanY) e@iN, L= Ti/T)L, € >0, (31)
d
d_f[(l —a)(w + 1] =-N1-a)expN(1-T,/T})], £>0, (32)
dr,  d?T,
(1 - as) (d—f - d—§2> = ng(Tg - Ts)7 § < 07 (33)
dT d ary, . d7,
(1 a) G+ e éL[pg(ug +UT] = g [(1 )G Hag], e<o @
d ld dr;
- o+ D@+ 1) = 1 [(1- ) G | + 0K (T, ~ T, ¢>0. @9
d
g1 = @) (@1 +Q +BT1) + Feupg g + 1)(QuY +5T,)]
~d dr; dr, o1y dy
_d_§ I(1- )d§+l §+QgA d§ , &£>0, (36)
TylY +w(l-Y)] =1, w=(1-r)/r (37-38)
subject to the boundary conditions
a=a, for <0, (39)
ug—0, Y=1 T,—-T;—1 as{— —oo, (40)
a—1 Y =0 T,—-T,—1T, as{— +oo, (41)
and the melting-surface (¢ = 0) conditions
_o+ £=0t
—o+ £=07t £=0" =0
T7 =T =Ty, Tgf " -y _ _ 9T —0, (42)
6207 6:0_ gzo_ d£ = df
£=0 £=0-
dr; dr
— - =~y + (b= 1)Tp, 43
& oo G|, Y5+ (b—1) (43)
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We remark that in writing Equations (38)—(43), we have for simplicity, set the velocity-
perturbation parameter s introduced in Equation (12) to zero, implying continuity of « and
ug @ & = 0 asindicated above. Thus, the final model for steady, planar deflagration that has
been derived is given by (28)—(43), with the final burned temperature T}, and the flame-speed
eigenvalue (either A; or A,) to be determined. The latter then determines the burning rate,
and is the main result to be determined from the analysis that follows. We note that this
model, since it allows for temperature differences between phases at a given spatial location,
Is sometimes referred to as a two-temperature model. An important special case, to which the
present work will ultimately be restricted, isthat in which the rate of interphase heat transfer,
asreflected in the values of the parameters K, and K4, islarge. Thisrestriction then leadsto
asomewhat simpler single-temperature model asaformal first approximation to the problem
defined by (28)—43), while still alowing for the essential two-phase-flow effects associated
with velocity differences between phases.

4. Determination of T}

The solution in the region ¢ < 0, where chemical activity has been assumed to be absent, as
well asexpressionsfor Tj, and g o, = u¢|¢=o0, are obtained from the general two-temperature
model as follows. From (28) and (40), we have

pglug +1) =1, £<0, (44)
while an integration of (29) gives, upon use of (44), the integral

] dy
Y — 1 - = Le_l—,
b d¢

Similarly, integration of (30) implies

¢ <0. (45)

(1—-a) +rapg(ug + 1) = pr(ug,oo +1), £>0, (46)

where p% = (wT;)~* is the burned gas density. Thus, evaluating (46) at ¢ = O, using (44)
and thefact that all variables are continuousthere, we obtain an expression for the burned-gas
velocity ug o, asfollows

1+a4r—1
Ug oo = # -1, (47)
TPyg
or, interms of T},
1+as(r—1
Ug oo = %wﬂ -1 (48)

Turning attention to the overall energy equations (34) and (36), we may readily perform a
single integration on each using the preceding results to obtain

(1 — a)(Ts — 1) + b (T, — 1) = (1 — as)dd—? + iasdd—?, £ <0, (49)
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and

(1— a)(Qi + Qg + bT) + [ + a (7 — 1)])(QqY + bTy)

B dr; . dT, I, . dv . X
=I(1-a) & +lo & +Q93Le adf +b[1+ as(f — 1)|T,, & >0. (50)

Thus, subtracting (49) evaluated at ¢ = 0~ from (50) evaluated at ¢ = 0T and using the
melting-surface conditions (42) and (43), we derive for T}, the expression

T, = (1_as)(Ql‘|ng+1+”Ys)+fas(Qg+B). (51)

b[1+ as(r —1)]

We note that this result has been derived from the more general two-temperature model (28)—
(43) and is independent of the particular form of the equation of state for the gas. In the
limit Q, — 0, Equation (51) collapsesto the result obtained for the corresponding single-step
model analyzedin [7].

The formulas for 7;, and u, ., given above exhibit certain features worth noting. In par-
ticular, there are significant variations of the final burned temperature and gas velocity with
pressure, since these quantities depend on the gas-to-solid density ratio #, which in turn is
proportional to j5; according to # = pi/ps = Wipy/ps R°Ty = P/ psce(1 — v )Ty, where
v is the ratio of specific heats for the gas. As discussed previously in connection with the
single-step model ([7]), this important effect arises from the thermal expansion of the gas
and the two-phase nature of the flow in the solid/gas and liquid/gas regions, where significant
gas-phase convective transport of enthal py relative to the condensed phase occurs. In the limit
p; — 0 (e i — 0), weseethat ugo, — co and T, — 10 = b 4(Qr + Qg + 1 + 7s).
Since there is effectively no gas-phase enthalpy content in this limit, TbO is also the value of
Ty, in the limit of zero porosity (as — 0). For nonzero values of both pressure and porosity,
some of the heat released by combustion must be used to help raise the temperature of the
gas-phase intermediates within the porous solid from unity to T},. Consequently, both T}, and
thefinal gasvelocity u, . aretypically decreasing functions of the nondimensional gas-phase
density 7, which increases with pressure according to the above relation. For example, when
7 isrelatively small, we have

Ty o Qg"‘(; ( o )2 ,
— =1- 1- + 0 , 51
Tbo 1—045< Ql+Qg+1+75 1—as ( )

where, under typical practical circumstances, theratio (Q, +b)/(Q;+Q, -+ 14 islessthan
unity (e.g., whenb < 1and Q; > |v,|). An additional effect that is revealed by the two-step
reaction mechanism is that 7;, does not depend just on the total heat release Q; + @, = Q
associated with the complete conversion of the energetic solid to final gas products, but also
on the heat release (), specifically associated with the gas-phase reaction. This, too, is a
two-phase-flow effect that arises from the fact that the reactive intermediate gas-pase species
occupy the voidsin the porous solid, and the heat released by these pre-existing intermediates
affects the final burned temperature. In particular, for a given total heat release (2, the burned
temperature increases as the fractional heat release associated with the gas-phase reaction
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Figure 2. Final burned temperature T}, as a function of the solid porosity «, for several values of the gas-phase
heat release (9, (remaining parameter values are the same as those used in Figure 1).

increases. Plots of T, as a function of «, for several different values of (), are shown in
Figure 2.

5. Thesingle-temperaturelimit and the outer solution

As indicated at the end of section 3, an important and realistic limiting case, which results
in further simplification, is to consider the formal limit of infinitely fast interphase heat
transfer (i.e. K, K;; — o0), where such alimit corresponds to the typical casein which a
representative element of the medium (such as a gas bubble) is small. In that limit, Equations
(33) and (35) imply that 75, = T, = T intheregion ¢ < 0, and 7} = T, = T" in the region
¢ > 0. Themodel thenreducesto asingle-temperature model, whichisanalyzedin the next two
sections. However, asdiscussed in Section 2, the corresponding assumption of asingle-velocity
model is inconsistent with momentum conservation, and thus a primary feature of even the
single-temperature limit is the allowance for velocity differences between coexisting phases.
The case of large, but finite, values of the interphase heat-transfer coefficients, which permit
separate temperatures for each phasein the reaction zone (the region where two-temperature
effects first appear), was considered in [4] and [7] in connection with the single-step model
for the nonporous («s = 0) and porous («; > 0) cases, respectively.

Inthelimit that K, and K, are both infinite, the model (28)—(43) reducesto asubproblem
written in terms of the single temperature variable T' that denotes the common temperature
of al phases at a given spatial location. In particular, we obtain in this limit the reduced set
of equations given by the continuity equations (28)—(32) [with T; and T, each replaced by T’
in the reaction-rate terms, and, in (30) and (32), u; + 1 = r~* according to (38)], the overall
energy equations (34) and (36), which, using (38), become

d . d . T ,
G (= + oy g + DT} = [(1 —a+lo) G|, £<0, (34)
d A
d—g[(l —a)(Q1 + Qg + bT) + fapy(uy + 1)(Q,Y + bT)]
. (36')
_d . dT [ 0
—d—g{[l(l—a)+la]d—€}+QQZLe d_f27 &> 0,
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and the equation of state (37) for p,(7,Y’). These are subject to the boundary conditions
(39)—41), in which the boundary conditions on the temperaturereducetoT” — T, andT — 1
at { = Fo0, respectively, continuity of u,, Y, dY/d¢ and T' = T}, a £ = 0, and the overall
jump condition

g 4
[l(l—a5)+loz5]d—§ g 0+—(1—as+zas)d_:£ —(l—ag) [~y (=1)Th].  (43)
. o

We remark that we obtain (43'), which represents overall enthalpy-flux conservation across
¢ = 0, by multiplying (43) by (1 — «;) and adding the result to the last of (42) multiplied by
I,. Finally, Equations (49) and (50) become

dr

(1 — ag + 7o) (T — 1) = (1—a5+ias)d—€, £<0, (52)
and
> N . ~ . dT
b(1l—a) +bla — a5+ a?)]T + (0 — a5 + as7) QY = [I(1 — ) + la]d_f
[, dy . )
+Qg[§ Le ad—€ —(1-a)(Q + Q) +b(1 — a5 + )Ty, & >0, (53)

which now take the place of (34') and (36"). We may integrate (52) using the fact that 7" = T},
at ¢ = 0 to give an explicit expression for 7" in the region ¢ < 0, but further analytical
development leading to the determination of the burning rate eigenvalue requires an analysis
of thereactiveliquid/gasregion ¢ > 0. Equations(31), (32) and (53) constitute three equations
for Y, T and « in this region, with u, then determined from (46) along with the equation of
state (37), and the eigenvalue A; determined by the boundary conditions. In order to handle
the Arrhenius nonlinearities in (31) and (32), we exploit the largeness of the nondimensional
activation energies N, and IV;, and consider the formal asymptotic limit Ny, N; >> 1 suchthat

Ny pza-ThN >, (54)
Ny
where v is an O(1) parameter and the Zel’dovich number ( is the large activation-energy
parameter that naturally emergesintheanalysisthat follows. For simplicity, weshall eventually
assumer = 1, in which case (54) implies that we are considering the regime in which the two
large activation energies differ by an approximately O(1) amount. The relation (54), along
with a corresponding order relation for the ratio A,/A; to be introduced shortly, helps to
insure that both the condensed and gas-phase reactions are active in a single thin reaction
zone. Departures from (54) allow for separated reaction zones (see [17]), but in the present
work we shall focus on the merged case just described (see[12], [13], [14], [15]).
Inthelimit 8 — oo, the Arrheniustermsare exponentially small unless7" iswithin O(1/3)
of T}. Consequently, all chemical activity is concentrated in a very thin reaction zone whose
thicknessisO(1//3). On the scale of the (outer) coordinate ¢, thisthin region is a sheet whose
location is denoted by &, = =, — z,,, Where z,. > z,,. Hence, the semi-infinite liquid/gas
region is comprised of a preheat zone 0 < ¢ < &,) where chemical activity is exponentially
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small, thethin reaction zone where the two chemical reactions are active and go to compl etion,
and a burned region £ > &,.. Denoting the outer solutions on either side of the reaction zone
by a zero superscript, we conclude from (32) that

0_ { o, & <&, (55)
1, {>¢&,
and from (37), (44), (46) and (47),
wy+1— %;ms[yjm(l_y)p (56)

for all £. We observethat thereis ajumpin o, and hencealsoin u‘g’, acrossthe reaction zone.
Similarly, in obtaining the complete outer solution for Y and 7', we must connect the solutions
on either side of the reaction zone by deriving appropriate jump conditions across ¢ = &,.
Thiswill ultimately entail the introduction of a stretched coordinate (see below) appropriate
for analyzing the inner structure within the reaction zone, whereupon an asymptotic matching
of the inner and outer solutions will yield not only the aforementioned jump conditions, but
a so the burning-rate eigenvalue as well. In connection with this procedure, it is convenient,
and physically appealing, to attempt a representation of the reaction-rate terms in (31) and
(32) as delta-function distributions with respect to the outer spatial variable £ ([12, 13]). As
aresult, using the results (55) and (56), we may write the governing system of equations for
the outer solution variables Y and 7° as

0 0, ,dy?®
7 0
d—dg[(oz0 — g + 7, ) YO -l = é Le_ld_df (d’%) —P,5(¢—¢ —H), £>0, (58)
1 da®
;d_ng)lé(f_&“)a £>0, (59)
0 0 N
(1 — as + 7bag)(T" — 1) :(1—a5+las)d—€, ¢ <0, (60)
and
. - 0,010
(1 — a®) + b(a® — a5 + as?)] T + (a® — a5 + as7)Q, YO = [I(1 - °) + zof’]d—5
[ 1 odV? 0 2 .
+le§ Le ‘'« d_§ —(1-a")(Q + Q) +b(1— a5+ )Ty, & >0, (62)

where P, and P, are the source strengths of the reaction-rate distributions placed at { = &,
and ¢ = ¢, + H, respectively. These quantities, along with the separation distance H, are to
be determined, where the ability to do so validates the delta-function representation of the
reaction rates, at least to the order of analysis considered here. We note that the O(1/3) width
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of the merged reaction zoneimpliesthat H is of thisorder (or smaller) aswell, and in fact we
will eventually seek H as an expansion in inverse powers of j3.

The solution of Equations (57)—61) subject to the melting conditions at £ = 0 and the
boundary conditions at ¢ = +o0 is straightforward. In particular, we find that P, and P, are
given by

P(1—os)/r, Py=1-—a,+ras, (62)

where, for example, the first of these follows from (55) and the integral of (59) from ¢ = ¢~
to ¢ = &F. The outer solutions Y© and 7° are then determined in terms of H as

(L &P (L =y +Fa)bLeH /D epfible(t — &)/l € <&,

YO(¢) = 41— exp[(1— as + Fov)bLe (& — & — H)/I), ¢ < &< & + H, (63)
0, {>¢& +H,
( 1—a5+f3a5
b(1 — ) + Fbasg
B Tm_B ~ ) 0 )
To(f) = * )exp[ I(1—as) + las ] DR (64)
Bl+(Tb_Bl)eXp [%(1—(&4—?(&)(6—&—[1)] s §r<€<§r+H7
Ty = B1+ Qy/b §>¢& +H,
where
B= (1_ as)(1+ 'Ys) -1-7%0@ B = (1 - asA)(Ql + 1+’)’s) + flA)as. (65)

b(1— a) +7A"i7045 ’ b(1 — a5 + Fag)

Thelocation &, of the reaction zone, which appears as asheet on the scale of the outer variable
¢, isthus determined by (64) from continuity of T'at £ = H as

fr o l(l — as) + lAas |Og Bl - B+ (Tb — Bl) exp[_b(l — Q5 + TaS)H/l] ] (66)
b(1 — ) + 7basg Tm—B

A sketch of the outer solution is exhibited in Figure 1.

We remark that since H < O(1/4) and the interval ¢, < ¢ < H thus lies within the
merged reaction zone, that portion of (63) and (64) that actually represents the outer solution
isthe solution for ¢ < &, and £ > &, + H. Consequently, Equations (63) and (64) imply an
O(H) jump in the outer solutions Y° and 7° across the reaction zone [i.e. from ¢ = ¢, to
¢ = (& + H)™]. We can motivate this directly by noting that for A small, an expansion of
the delta-function (¢ — &, — H) in (58) about H = 0 introduces the derivative of the delta-
function, ¢’ (¢ — &,) (see[13]). The latter implies ahigher order singularity (discontinuitiesin
the variables Y° and T° themselves) at ¢ = &, than that which occurs when H isidentically
zero, in which case Y° and T° are continuous and only their derivatives (e.g. dY°/d¢ and
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d1°/d¢) are discontinuous there. The need to allow for the possibility of such higher order
discontinuities across the reaction zone either directly (see [14]) or through the introduction
of generalized functions as in the present work, is one distinguishing feature of asymptotic
formulations of multi-step combustion waves relative to their single-step counterparts. The
actual values of these discontinuities, as we determined here by the value of the separation
distance H, aswell asthe burning-rate eigenvalueitself, are cal culated by matching the above
outer solution to the inner solution of the reaction-zone problem, which we now consider.

6. Reaction-zone solutions

The determination of the burning-rate eigenvalue A; and the separation distance H, aswell as
the spatial evolution of the variables o, u4, Y and 7" within the reaction zone (which are all
discontinuous on the scale of the outer variable £), requires an inner analysis of the chemical
boundary layer that liesin the vicinity of &,.. We thus introduce a stretched inner variable n,

n=pE—¢), (67)

where the Zel’dovich number 3 > 1 was defined by the second of (54). For convenience, we
also define anormalized temperature variable © as

0— ;‘b_:ll (69)
and seek solutions in the form of the expansions

a~ag+ B o+ 200+, Ug ~ uo + B ug + B ug + - -, (69-70)

Y~ By +8 %+, O~1+0M1+6 %+, (71-72)

A~ Bho+ B M+ B %A +-+), H~pB ha+ B 2ho+---, (73-74)

where the coefficients in the expansion of u, are calculated in terms of the «;, y; and 6; from
(56), which is also valid in the reaction zone. At this point, we also order the nondimensional
rate-coefficient ratio A, /A, as

1= 75 el N = 07, (7

A I
wherev isthe activation-energy ratio defined by thefirst equation of (54) and A isan analogous
O(1) parameter that definesthe scaled val ue of therate-coefficient ratio. The scaling embodied
in (75) is required, given (54), to construct an inner solution that corresponds to a merged
reaction zone. Asdiscussed below (54), different scalingsare permissible, but would generally
correspond to separated reaction zones for the condensed- and gas phase reactions (see [5]).
Substituting the above inner expansionsin (31), (32) and (53), we find that the governing
equations for the leading-order inner variables ag, y1 and 6; are given by

dOéo o 0,
a =rAo(1— ap)e™, (76)
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d01 ZQg dy1 (b—b)Ty + Q1 + Q,
I+ (-1 A— 1- , 77
i _1 d dyl) . _dOéo n n v
; Le a <a a )= "y + AMwTp) " Ao(aoyr)™e”"t. (78)

Solutions to these inner equations asn — +oo must match with the outer solution (55), (63)
and (64) as¢ 1 ¢, andas¢ | (& + H)™, respectively. Thisleads to the matching conditions

ao—1, 601—0, y17—0 a n— +oo, (79)

and

b
ag = ag, 01~ Emn+ Eshy, y1~ 7 Le[—7n + (1 — a, + fag)hi]asy — oo,  (80)

where the coefficients E1 and F» in the second equation of (80) are defined as

Ty — B b(1— ) + b o D—DB
Ty—1 11—y +lo, ? T,—-1

Solution of the complete inner problem given by (76)—(81) will only be possible for certain
values of h1 and Ag, which thus play the role of eigenvalues. The determination of Ag, the
scaled leading-order coefficient in the expansion of the burning rate eigenvalue, is the main
result to be obtained from the analysis that follows.

We simplify the problem defined by (76)—(81) somewhat by employing ag as the inde-
pendent variable. Thus, using (76), we may write the remaining Equations (77) and (78)
as

~>| T

E= (1— a5 + o). (81)

5, 001 Q b dyr  (b=0)Tp+Q +Q
I+ (—1 b9 et = g 82
o 0= Dede G+ e 0 e~ (G = Drho (82)
i —1 d 01 dyl _ A —n (aoyl)n (v—1)01
erB Le dae ap(l— ap) € doo| = 1+ " (wTy) 1—a e . (83)

Sinceaclosed-form solution to thissystemis not readily apparent, werestrict further analytical
development to a perturbation analysis of (82) and (83) in the limit that ), is small relative
to @, corresponding to the assumption that most of the heat release occurs in the first stage
of the two-step reaction process. We remark, however, that this implies that at least some of
the initial exothermic gas-phase decomposition reactions should be bumped with the overall
reaction (1a), regarding the resulting decomposition products as the gas-phase intermediates
I(g). Thus, we formally define the small parameter ¢ = Q,, where O(67Y) < ¢ < O(1),
and seek solutions to the leading-order inner problem in the form

ao~ag+eagt+eagt o, 1~ Yl et + e+, (84-85)
01~ 00+ €01+ €205+, Ao~ A+ eAF+ A5+, (86-87)

hi~hY+ehl+e®h3 +---. (88)



190 Sephen B. Margolis

In addition, we observe from the expression for 7}, in (64) that 7, = B, + ¢/ b.

Substituting these latest expansions in (82) and (83), we readily see that a subproblem
for o and 69 decouples from the full leading-order problem (with respect to €), and that it
isidentical in form to that obtained for the single-step analysis corresponding to the global
reaction scheme R(c) — P(g) ([7]). In particular, we obtain from (76) and (82)

000 _ (b—b)B1+Q

I+ (I —1)al] e = 89
0
T - oyt (90)
subject to
=1 -0 as n+ oo,
0 1 n (91)

ad—as, 09~E¥ a n— —oo,

where EY is given by the first equation of (81) with T}, replaced by its |eading-order approxi-
mation B;. Equation (89) is readily integrated from o8 = «; (atn = —oo) toany af < 1 (at
n = +o0) to give

gy — (=B /“g da (92)
(B1—DrAS Jo, 1+ (I —Da

Evaluating (92) at o = 1 (at which 9 = 0), we thus determine the leading-order coefficient
A§ in the expansion of the burning-rate eigenvalue as
(b—b)B1+ Qi
(Bi—)r(i —1)
(b—b)Bi+Q
(Bl — 1)7“[

Substituting this result in (92) for arbitrary a and performing the indicated integrarion, we
thus obtain

log

. ],l;&i,
A8= I+ (I —1Das (93)

(1— ay), I=1.

- (Iog[l + (I = )ag] —logll + (I - l)o‘s]> [#1
Iogi— log[l + (lA— 1)) ’ ’

0

on — ~
lo 0 -5 [ =1.
g<1—045>7

The determination of «3(n), and hence 6(n), then follows directly from (90). For example,
when | = [ (equal gasand liquid thermal conductivities), we obtain

as +exp{l (b — )B1 + QJ(1 — as)n/(By — 1)}
1+ exp{I=2[(b = ) B+ Q(1 - as)n/(BL - 1)}

where the second of the matching conditions (91) has been used to evaluate the constant of
integration.

61(c) = (94)

ad(n) = , (95)
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The first approximation, Equation (93), for the burning-rate eigenvalue is independent of
the effects of the second reaction (1b), which has been assumed to have a relatively small
thermal effect. Consequently, the first effects of the two-step mechanism on the burning
rate appear a O(e), which, from (87), requires the calculation of AJ. We thus proceed by
first calculating the leading-order mass fraction variable 42, which is determined from the
leading-order version of (83). For additional ssmplicity, we restrict further consideration to
the parameter regime

oy = aie, [=1+€', v=1+eat (96)

corresponding to O(e) values of theinitial porosity, O(e) differencesin the conductivities of
the condensed and gaseous phases, and O(¢/3) differencesin the activation energies of the two
reaction steps. In addition, we consider only the case of afirst-order gas-phase reaction (i.e.
n = 1), and assume that

A bLe
rwASTY vl 14 ek, (97)
where T2 = (Q; + 1 + ) /b is the leading-order approximation to 7}, with respect to ¢ in
the above parameter regime. The parameter group on the left-hand side of Equation (97) isa
gas-to-liquid ratio of diffusion-weighted reaction rates, where we may interpret the latter as
characteristic measures of the rate of depletion of the reacting species, taking into account
both chemical reaction and, for the gas phase, species diffusion. Such quantities appear to
arise naturally in the analysis of multi-step flames, and, based on the above interpretation,
have been referred to as consumption rates (see[12, 13]). Thefact that larger gas-phase Lewis
numbers are associated with higher rates of depletion of the gaseous reactant stems from the
higher concentration of this speciesin the reaction zone that results from smaller values of the
gas-phase mass diffusivity.

In the parameter regime just outlined, the expressions (93) and (94) for 69 and A simplify

to
0 —logad, A3= A t=DL+7) (%9)
where, for as ~ O(e), Equation (95) implies
0 exp(rAdn)
_ 99
or
1 al
- | O 1.
n TA8 0g (1 — a8> (99b)

Consequently, the leading-order version of Equation (78) for 9 as a function of o is given
by

0 0
o l—op

Py 2 1\ dy? y9 ~ ble 1 (100)
dog dd " a8 a7~ Ay (aQPa el
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subject to ¢ — 0 asaf — 1 and an appropriate matching condition as o — 0. The latter,
however, cannot be obtained directly from (80) because that equation was derived under the
assumption that «; # 0, whereas to leading order in €, «; is equal to zero. Indeed, at this
order, the outer solution (63) for Y% hasno meaning for ¢ < 0, sincethereis no gaseous phase
in this region at this order of approximation. To derive the appropriate matching conditions
on the inner mass fraction variables y? and, for later use, y1, we consider a new variable Z,
defined as the mass fraction of the intermediate gas-phase species with respect to the total
mass of all species, gaseous and condensed, at a given point. Thus, Z is defined in terms of
the variables already introduced as

_ rTapgY _ ray (101)
fapg+r(l—a) fa+r(l—a))Y +w(l-Y)|T’

where we have used the equation of state (37) to obtain the second equality. However, unlike
Y, the variable Z is physically unambiguous in the limit that & — O, where it must vanish.
From (101) applied to the reaction zone, Z has the asymptotic development

ZNﬁfl [ f(ag—l—ea(l)—i-)(y(l)%—ey%—i-) _i_O(BfZ)
| Fled+ead+ ) +r(l—af—eag— - Jw(TQ + €Ty + )
[ ~ 0,0
-1 oY1
~ 102
b _fag—i—r(l—ozg)wao] (102)
vopaf OBl 6~ T+ - o)) |
f“ag +7r(l- ag)waO [fozg +7r(l— ozg)waO]2 ’

where, from the last equation of (64) and (65) and the first equation of (96), 7} and 7} are
defined by

Ty ~TR+ T+, TP =(Qi+1+7,)/b, TE=0b1—#T0 -1l (103)

On the other hand, form the outer solution (55), (63) and (64) and the fact that as = eal, the
behavior of Z in the outer preheat regionin thelimit £ 1 &7, is, in terms of the inner variable
7, given by

7 Eﬁ_lfag'l; Le

—in + BO). 104
erbol( 1 + h) (104)

Thus, requiring the inner expression (102) for Z to match with the outer expression (104) in
thelimit » — —oo, we equate like-order terms to arrive at the matching conditions

Q=0 as af—=0 (105)
and

bLe 2
agy% ~ —aiy? + ot (—# log a8 + hg) as a8 -0, (106)
0
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Figure 3. Inner structure of the leftward-propagating deflagration wave. Curves were drawn for the parameter
regime analyzed in Section 6, based on the parameter values used in Figure 1 (the latter imply that the scaled

parameters ol = a;/Q, = 05and I* = (I — 1)/Q, = —0-4).

where we have used Equation (99b) to write these conditions in terms of o as o tends to
zero, and have used (105) and the fact that of — « in this limit to obtain the final form of
(106).

Proceedi ng with the solution for y, we observe that homogeneous solutions of (100) are
()11 - af) and (@) ~1(1 — )2, whence a particular solution may be constructed in a
standard fashion (e.g., by use of the variation of constants formula). In this way, the general
soution of (100) is determined as

1—al 1 ble [1—a 1—ad |Oga —al
0 0 0 0 0~ %
= +c lo

ad ad(1—af) 27”le o
where ¢; and ¢, are arbitrary constants of integration. Applying the boundary condition at

a3 = 1, we conclude that ¢, = —bLe/2rlA, while requiring that the condition (105) be
satisfied gives ¢y = —c,. Thus, 49 is given by

—al 0 0
141 aoao log (1 ao%) 1994 ] , (108)

] ,(107)

o ble
n= 2rlA8

0 0 048(1 - 048)

which completes our analysis of the leading-order reaction-zone problem. We observe that,
athough ay$ approaches zero in the limit that o becomes small, as required by (105), the
variable y{ itsdlf is unbounded in that limit, exhibiting the behavior y9 ~ —(bLe/rIA3) Inaf
as af — 0. Profiles of the leading-order inner variables are shown in Figure 3, where the
relationship (99a) for «3(n) was used to exhibit these variables as functions of 7.

The reaction-zone problem at the next order (with respect to ¢) is obtained by collecting
termsof order e when the expansions(84)—(88), (96) and (97) are substituted in (76)—80). This
results in a problem for the inner variables of, y1 and 6% introduced in Equations (84)—(86)
and the coefficients A} and 19 that appear in the corresponding expansions (87) and (88) for
the eigenvalues Ag and k1. In particular, we obtain

% r[A(1— ap)01 + Ag(1 — af) — Adag] € (109)

dH% ul odog ! ody? 1 0
Pl 4 — Q7 = cpad + Ci(1— D), 110
d’l] 0 d’f] bLe(TlfJ . 1) 0 d’f] 0t l( O) ( )
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I ,d dyt dy®\ it ., d dy®\  dad
el = [ad=2 +ad=2 )| + ~Le 1~ ao 1 —L -
b dy ( Ody "%y ) T dp\ Cdyp ) dy
2700 1 2
[A Ty l
E0 (A — 6 ) AS+ AR oy @+ = (AD)[ady+ oyt +ady(n69+61) € (110)
bLe T Le
subject to the matching conditions
ag—0, 01 —=0 yt-0 as n— +oo, (112)

blLe
ag = oy, 01~ Bin+ E3hl, gyt ~ ag——[(1—#)n+hi] as 7 —oo, (113)

wherewe have used thebehavior of y?indicated bel ow Equation (108) to simplify thematching
condition (106) on a3yt asn ~ (rAS)~tlogad — —oo. Here, from thelast of Equations (64)
and (65) and the first Equation of (96), the coefficients Co, C1, E} and E are given by

(b—HTY + @ TP —1—THQi +b—b)

o ol o 114
0 70 -1 e M (7y — 1)? ’ e

g b =b) (TP - D T4y =) g 1 (115)
1= U(TY — 1)? EERCEE)

where 7} and 7} were defined in (103). We observethat 73}, and hence C; and E7, all depend
on o, reflecting, to this order of approximation, a linearly decreasing dependence of the
burned temperature on the initial porosity for small values of the latter.

It is again convenient to use avolume-fraction variable(in this case, o) asthe independent
variable, which transforms (109)—(111) into a somewhat simpler form. In particular, from
(99), we obtain the transformation rule

= TAo(Xo(l (Xo) do (116)

d77 dagd’

which, along with the expressions (98a) and (108) for #2 and 42, results in the transformed
system

da% al Al
=0 01 117
da8+1—ao 1+A0’ (117)

0.0 dej:ll.- 71
Tleao(l )d 0 + Ooao = C]_(l Oéo) —rl Aoao(l ao)

Qg
1 0 0 0 (ag)z 0
+3o 7y |28~ (- aB)loa(L—af) + 7= logef) (118)



A deflagration analysis of porous energetic materials 195

Pyt (g 1 >dy% vi

dad ad 1-af) daf ad(1l-ad)?

BLe 1 d 1 1- a8 0 a8 0
= . — -1- log(1— lo
2rlAY  (a8)2(1 - ) dad {ao [ ad 9(1-ag) + 1-ad 9o

It bLe 1 2—af ad(2 — af)
L. log(1 — of um
T 2080 (aQ)A1-ad) [1— logl = a0) + T oy 905
_ bLe 1 Tb+Al+a%+91+V1IO o0
20103 aQ(1—aQ2 \"1 T 70 T Ag T gy T T YI0
1-af 1-af logad
1+ aOIog( OO‘°>+ 9% | (119)
ao Qo ap(1 — ag)
subject to
og—0, 01—0 yt—0 a af—1, (120)
1 1 o B 0, 71,0
Qg — o, 91 ~ F IOgOéo + Ezhl,
g
ble (1

Solution of the subsystem (117) and (118) for o and 61, subject to the above matching
conditions, will determine the burning rate eigenvalue A}, while the subsequent solution of
(119) for 1 will, from the last matching condition in (121), determine the separation-distance
coefficient h9.

The solution for o and 61 proceeds as follows. Multiplying (117) by the integrating factor
(1 — af)~1, we may rewrite this equation as

d o 1 1 Ad
— = 07 + — 122
da8 (1—a8> 1—a8<1+A8 ’ (122)

Then, dividing (118) by 1 — o3 and differentiating with respect to «3, we may substitute (122)
in the result to obtain a single second-order equation for 63 given by

o 1wt ol
dof  afdad  ad(1-ad)
1 1 logad AFIAY T

— — 123
FASTO— D) |31 —ad? T (1-aDP|  all-al) ol (123)
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where we have used the fact that Cp = rIAJ. Homogeneous solutions of (123) are 1 — o
and (1 — ) log [a8(1 — a3)~1] + 1. To obtain aparticular solution, we first introduce a new
variablev defined by 01 = (1— af)v, where, by substituting this form of the solutionin (123),
we find that dv/dad = u satisfies the first-order equation

d_u+ 1—3048 u_RHSQg
dad  af(1-ad) " 1-af’

where ‘RHS;»3’ denotes the inhomogeneous right hand side of Equation (123). Multiplying
Equation (124) by the integrating factor a3(1 — «3)?, we may rewrite that equation as

d

(124)

@[ag(l — ad)?u] = ad(1 — o) (RHS23). (125)
0
Integrating the latter, we obtain a particular integral v, as
dvy, 1 1 ad : 0
=L _ glo Lio(1—
7 48 af(1—ad)? {rmg(TbO —1) L — g 0900~ Liz(1 o)
Aé 0 lAl 0\2
T 0% + o (1—ag), (126)

a by
Lig(cr) = — /Oa logl=a) 4, -y~ (127)

where the latter form of the representatlon is convergent for |o| < 1 (see [18]). In the real
domain of interest here (0 < a < 1), Liz(a) is a monotonic function that ranges from
Li»(0) = Oto Lix(1) = 7r2/6. In what follows, it will also be convenient to introduce the
trilogarithm Lisz(«) where, generally speaking, the polylogarithms Li,, of order n > 2 are
defined as

Lin(a):/o L'”—l i“—n (128)

(see[18]). Thus, integrating (126), we obtain the general solution for 61 as
Ay It
+e(l—ad) -0+ =

aO
1+(1—a8)log< 0 ) (
1—af A "2

1 1 |logal 0 ad
SR S— —(1-ad)! ~1
+rlAg(T,9—1){2l1—ag (1=ao)log | 750

2
6

01 = ¢ 1—ad)logad

+ le(ao)] (1- ao) log ao +(1- ao) 2 L|3(a0) + Liz(1— ao)]

—Liz(1—af) + (1 —af)log(1— ) —i—aologag} (129)
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where ¢; and ¢, are constants of integration, and where we have used the identity

Liz(e) + Lio(1 — a) = %2 —logerlog(1 — ) (130)

to evaluate [ a3 o1 Li2(1 — «) da. Applying the matching conditions (120) and (121), we
thus obtain a set of relations for ¢y, c, A3 and 19 given by

o Ao 1 C+Z_l_i ™ g (131-132)
YUAY T AP -1y P pAd el e
Al hO 1 T2 1 .
_ 20 = — + = —Lis(1 133
c1+ ¢ A0+l( T A 53 3( )], (133)

where we have used the fact that Li>(1) = 7?/6 and Liz(1) = 1-20205690. Thus, from (131)
and (132), the O(¢) coefficient AJ in the expansion of the burning-rate eigenvalue is given
uniquely by

1 72 1 [t
A= —F—|—=—1|+=Ef - =AJ, 134
0 rl(Tbo—l)(G >+r )] (134)

where E1 was defined by (115), and the constants of integration ¢; and c; are given explicitly
as

72 El [t
1= eams Tt A0 T 3
6riAg(T, —1) rAyg 2
1 ™ 1 h9
= — | — 2 —Lis(1)| - —— 135
27 VNP — 1) la 5~ Lial )] (TP —1) (135)

where the latter depends on 49, which is still to be determined.
Having thus determined 63 («9) and AJ, we may readily solve (117) for «3. In particular,
multiplying that equation by the integrating factor (1 — «9) 1, we may rewrite (117) as

d ag 1 1 Ad
—5 = 1+ — |- 136
dag (1—a8> 1—a8<1+A8 (136)

Substituting the previousresultsin the right-hand side of (136) and performing an integration,
the general solution for o is determined as

af I
o = c3(1—af)+ (1—-af) lclaglog (1 — ) + 0 + 2l(ag logad — ag)]

aglogad + 1(3a8 — 1) log(1 — af)

N 1-ap 3agp — 2 B 7r_2
rlAg(TbO -1 21— 048) 6

+Lix(1— af) — adlogaf Liz(ad) + 20 Lis(af) + o Liz(1 — ag)}, (137)
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where the first term is the homogeneous solution and c¢3 is the constant of integration. We
observe that the matching condition (120a) as o — 1isidentically satisfied by this solution,
whereas the matching condition (121a) as ad — 0 determines ¢z as

1 2

S — 138
@ T BrIAY(TO — 1) (138)

C3 =

Profiles of o and 61 are exhibited in Figure 3, where the fact that, in the parameter regime
considered here, h§ = 1—7 = 0 (see below) has been used to determine uniquely the constant
of integration c; that appearsin the expressions (129) and (137) for these variables.

Having obtained the solutions for 61 and o as functions of o, we may now solve (119)
explicitly for 1 subject to the last of the matching conditions (120) and (121). Since the | atter
is expressed in terms of a8y1 it is convenient to introduce first the variable 21 = a3y1, in
terms of which we may rewrite (119), using (117), as

d 0 0, 21 d 0y,1 4
dad lao(l— O‘O)dTg - deg[(l — ap)z] — ol
_ bLe Al 1 log(1—af)  logaf
2rlA9 0 ad  1-af (ad)2 (1— af)?
A} 1 log(1— o Slogad [t
(o4 33) | R oS0l o
oot 0
—<>\1—Fb0—7+l/logao
0 0 0
g 0y , @(2—ap) 0
log(1— —————=1lo 139
X [1 _ 048 + g( Olo) + (1_ 058)2 gaO] } ( )
subject to
bLe [1—7
210 a ad—=1 2~ aiTe ( err logad + h?) as af — 0. (140)
0

Homogeneous solutions of (139) are (1 — af) and (1 — af)~L. Using the latter, we may
seek a particular solution in the form 21 = (1 — af)~tu. Thisleads to afirst-order equation
for v = du/dad, which, after multiplication by the appropriate integrating factor, may be
integrated to obtain an expression for v. A second integration then determines u, and hence
1. Proceeding in this fashion, we construct the general solution for 21 as

l=1-ad7? s —a ’ 7RHS:|_39((,¥) o | dev
A= (1-ad) /0 (1 )VO a(l_a)d]d
+D1(1— ag) + D2(1—ag) 4, (141)

whereRHS, 39" denotestheright-hand side of (139) and D1 and D, are constants of integration
that lead to terms proportional to the homogeneous solutions. It is readily verified by detailed
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examination of the integrand in (141) near « = 0 and o = 1 that the only singularity in the
general solution is that associated with the homogeneous solution (1 — «d) ~*. Consequently,
the first matching condition in (140) requires the choice

Dz:_41_a${4%1_@[[fa%1_a)1RHaw«@¢4d@

so that the family of solutions that vanish as a3 — 1 is given by

‘1-a) Voa RASio(@) g,

o o) dé + D1(1 — o). (142)

A=-1-ap7t |

0
@

The second matching condition in (140), on the other hand, can only be satisfied if 7 = 1
(or, more precisely, 7 = 1 + 7€), since the general solution (141) exhibits no logarithmic
behavior as « approaches zero. In that case, evaluating (142) at o = 0, we determine the
constant Dy in terms of A9 as

D, = hg_) + /01(1 — d) [/c)d afl(l — a)*l RHS:|_39(O[) dal d@,

and the solution for 23 isthus given by

7= —(1—a°)‘1/1(1_@) l/a RHS10() da] dér
0

ag a(l - Oé)

o [ 1bLe o | % RHSgz0() .

where the eigenvalue h9 appearsto be undetermined, at least to this order in the analysis. This
apparent indeterminacy is resolved at the next order with respect to e, where, in constructing
the solution for 22 = aJy?, we require that 9 = 0 in order to satisfy the matching conditions
at that order. Alternatively, the same conclusion may be reached when one considersthat, for
nonzero porosities, theinner solution for the original mass-fraction variableY” must ultimately
be matched to the outer solution (63). Thus, if A9 # 0, then (143) implies that the original
mass-fraction variable y} ~ ali~1bLerd(af) ! asad — 0, where (a8)~* ~ exp(—rAdn)
astheinner variable n — —oo. Since this would introduce exponential growth into the inner
solution for Y, whereas the outer solution (63), when expanded about ¢ = ¢, and written
in terms of 7, indicates that only algebraic growth of the inner solution with respect to
is compatible with asymptotic matching of the latter to the outer solution. Consequently,
we conclude that 1Y = 0 in the parameter regime analyzed here. We remark that the same
argument could have been applied directly to the matching condition (121) to infer the above
restriction on the value of #.

We conclude this section by noting that the required restriction of # to values that are
relatively close to unity, which corresponds to the assumption of high upstream gas-phase
densities, or pressures, has an obvious physical interpretation. In particular, the limit (97) of
approximately equal consumption ratesfor the condensed and gas-phasereaction for relatively
small gas-phase heat release is a distinguished limit for the merged-flame regime. That is,
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according to the expression for the gas-phase velocity given by (56), it limits the two-phase-
flow effect (i.e., the rate of gas-phase convective transport relative to the condensed phase) in
the preheat and reaction zones to that associated with thermal expansion of the gas. Larger
rates of gas-phase transport with respect to that in the condensed phase would cause the
gas-phase reaction to occur increasingly downstream of the condensed reaction, leading to a
breakdown in the merged flame structure analyzed here. It is anticipated that larger gas-phase
consumption rates would allow for larger gas-phase convective transport arising from smaller
upstream gas densities in the merged flame regime, but it would appear that the existence
of a merged-flame solution is highly sensitive to pressure (which determines # through the
gas-phase equation of state) and the relative rates of reaction associated with the condensed
and gas-phase portions of the deflagration. These and other conclusions are supported by
direct numerical solutions of the reaction-zone problem given by (79)—83) ([19]).

7. Discussion of the burning rate and conclusions

The dimensional propagation speed U, from the definition of A; given in Equation (27), is,
from (73) and (87), obtained as

2 XA, T2 -10) ]

U2 bk 0 1+€—
PsCs y l (12 - 1)

Tl
X(AS+ eAd+---) texp l—NF (1—6171’0+--->]
b

T,2-T)) A

S\SAl BO 7N0 ﬂOTl/(T071)+ {
~ 5 o Ny et Ly [y 1+e€
(12 —1) A3

psts A

+} (144)

where T}, which appears in the definitions of the nondimensional activation energy N, and
the Zel’dovich number 3, has been expanded according to (103), and we have introduced
the e-independent definitions NP = E;/RT? and f° = (T — 1)N?/T?. Substituting the
expressions (93b) and (134) for A9 and A}, respectively, and setting e equal to its definition
()4, We obtain the asymptotic expression for the burning rate, in the specific merged-flame
parameter regime considered here, as

Y A 0 .
e L T S e
sCs p — L+ s

2-1TP at2-10) I ™ —6
bT(TL — 1) T, L 60T, — 1 =)
(T — 1) 17 1+ -0
———— |as(b—=b) + ———= ||+ ¢ 145

where we have used the expression for 7} given in (103). The first effects of heat release
associated with the second step of the reaction model (1) are therefore obtained by studying
the terms proportional to @, in (145).

Thedominant effectsassociated with gas-phase heat rel ease are contained in the exponential
factor whose argument is proportional to Q,8°, which, since 37! < @, < Linour analysis,
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Figure 4. Approximate nondimensional propagation speed U = U(Q,, os)/U(0,0) asafunction of as = atQ,
for @4 = 0-1 (solid), 0-2 (dash), 0-3 (chain-dash), 0-4 (dot) and 0-5 (chain-dot), where the remaining parameter
val ues were taken to be the same as those used in the previous figures.

is an exponentially large factor unlessa! = a,/Q, ~ b~(T? — 1)~*. Values of the porosity
less (greater) than this critical value thus produce a significant increase (decrease) in the
burning rate over that of a nonporous material governed solely by the condensed reaction,
corresponding to whether or not the perturbation QgTbl in the burned temperature, which
arises from nonzero porosity and the additional heat release associated with the gas-phase
reaction, is positive or negative. Since @), is positive, the additional heat release associated
with the gas-phasereaction enhancesthe burning rate, but decreasing amountsof solid material
that correspond to increasing porositiesresult in lower overall heat rel ease associated with the
condensed-phasereaction, resulting in acritical val ue of porosity for which these counteracting
effects balance. Plots of the nondimensional propagation speed U = U (Qq, )/ U(0,0) asa
function of (), and «; are exhibited in Figure 4.

Although the dominant effect associated with nonzero porosity and a second gas-phase
reaction step is thus thermodynamic in nature, additional effects are revealed by those terms
arising from the correction QgAé to the leading-order burning-rate eigenvalue A9, which give
rise to the last three terms within the curly bracketsin (145). In particular, it is readily seen
that a value of the gas-phase thermal conductivity greater (less) than that of the liquid phase
tends to increase (decrease) the propagation speed, since larger values of it = ([ — 1)/ Qg
allow for greater heat transport from the reaction zone back to the preheat region, providing a
type of ‘excessenthalpy’ effect for the condensed phase portion of the reaction, which, in our
analysis, isresponsiblefor most of the heat release. The non-thermodynamic effect of nonzero
porosity, as reflected by its scaled value o, has either a negative or a positive effect on the
burning rate, depending on whether the differencein heat capacities b — b between the gasand
themelted material ispositive or negative. Assuming the latter, which isthe more typical case,
we are thus led to the conclusion that, thermodynamic effects aside, slightly porous materials
support a faster deflagration speed than their nonporous counterparts, partially overcoming
the opposite trend associated with lower burned temperatures described above.

In conclusion, the present analysis has sought to describe some of the effectsassociated with
the defl agration of porous energetic materials arising from two-phase-flow in the presence of a
multi phase sequential reaction mechanism. In contrast to previouswork for the nonporouscase
in which the condensed and gas-phase reactions were spatially separated [5], a merged-flame
parameter regime, in which both reactions are operative and proceed to completionin asingle
thin reaction zone, was considered in the present study of a porous material. Following the
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formulation of the general reaction-zone problem, it was ultimately determined that additional
parameter constraintsarerequired to support thistypeof structure. In particular, it was deduced
that therelative rates of consumption of the condensed and intermedi ate gaseous speciesimply
acorresponding restriction on the relative rates of convective transport in each phasein order
for a single merged flame structure to be maintained. The latter is controlled, at least in part,
by the pressure through the gas-phase equation of state. Thus, it was concluded that, when
the consumption rates associated with each reaction are approximately equal and most of
the heat release occursin the first reaction step, the merged-flame structure correspondsto a
high-pressure regime in which the relative flow of gaswith respect to the condensed material
arises primarily from thermal expansion of the gas in the preheat and reaction zones. This
result is consistent with typical experimentsinvolving HMX and RDX that show the tendency
of the primary gas flame to move closer to the propellant surface as the pressure increases.
Further parametric studies are in progress and will be reported in future publications.
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